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Network Working Group J. Postel
Request for Comments: 790 ISI

September 1981

Obsoletes RFCs: 776, 770, 762, 758,
755, 750, 739, 604, 503, 433, 349
Obsoletes IENs: 127, 117, 93

ASSIGNED NUMBERS

This Network Working Group Request for Comments documents the currently
assigned values from several series of numbers used in network protocol
implementations. This RFC will be updated periodically, and in any case
current information can be obtained from Jon Postel. The assignment of
numbers is also handled by Jon. If you are developing a protocol or
application that will require the use of a link, socket, port, protocol,
or network number please contact Jon to receive a number assignment.

Jon Postel
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

phone: (213) 822-1511

ARPANET mail: POSTEL@ISIF

Most of the protocols mentioned here are documented in the RFC series of
notes. The more prominent and more generally used are documented in the
Protocol Handbook [17] prepared by the Network Information Center (NIC).
Some of the items listed are undocumented. In all cases the name and
mailbox of the responsible individual is indicated. In the lists that
follow, a bracketed entry, e.g., [17,iii], at the right hand margin of
the page indicates a reference for the listed protocol, where the number
cites the document and the "iii" cites the person.
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Assigned Numbers

Network Numbers

ASSIGNED NETWORK NUMBERS

This list of network numbers is used in the internet address [33].
The Internet Protocol (IP) uses a 32 bit address and divides that
address into a network part and a "rest" or local address part. The
division takes 3 forms or classes.

The first type, or class a. of address has a 7-bit network number
and a 24-bit local address. This allows 128 class a networks.

1 2 3
01234567890123456789012345678901

- +-+--+- 4-+ - + - -+ - -+ -+ -+ - - -+ - + -+ -+ - - -+ -+ - + - - ---

101 NETWORK I Local Address

Class A Address

The second type, or class b, of address has a 14-bit network
number and a 16-bit local address. This allows 16,384 class b
networks.

1 2 3
01234567890123456789012345678901

;1 01 NETWORK I Local Address
+-v -+-+-+-.,.-+ ---- +- -+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+-+

Class B Address

The third type or class c, of address has a 21-bit network number
and a 8-bit local address. This allows 2,097,152 class c
networks.

1 2 3
01234567890123456789012345678901

j1 1 01 NETWORK I Local Address

Class C Address

One notation for internet host addresses commonly used divides the
32-bit address into four 8-bit fields and specifies the value of each
field as a decimal number with the fields separated by periods. For
example, the internet address of ISIF is 010.020.000.0V2.

This notation will be used in the listing of assigned network
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Assigned Numbers

Network Numbers

numbers. The class a networks will have nnn.rrr.rrr.rrr, the class b
networks will have nnn.nnn.rrr.rrr, and the class c networks will
have nnn.nnn.nnn.rrr, where nnn represents part or all of a network
number and rrr represents part or all of a local address or rest
field.

Assigned Network Numbers

Class A Networks

Internet Address Name Network References

000.rrr.rrr.rrr Reserved [JBP]
001.rrr.rrr.rrr BBN-PR BBN Packet Radio Network [DCA2]
002.rrr.rrr.rrr SF-PR-i SF Packet Radio Network (1) [JEM]
003.rrr.rrr.rrr BBN-RCC BBN RCC Network [SGC]
004.rrr.rrr.rrr SATNET Atlantic Satellite Network [DM11]
005.rrr.rrr.rrr SILL-PR Ft. Sill Packet Radio Network[JEM]
006.rrr.rrr.rrr SF-PR-2 SF Packet Radio Network (2) [JEM]
007.rrr.rrr.rrr CHAOS MIT CHAOS Network [MOON]
008.rrr.rrr.rrr CLARKNET SATNET subnet for Clarksburg[DM11]
009.rrr.rrr.rrr BRAGG-PR Ft. Bragg Packet Radio Net [JEM]
010.rrr.rrr.rrr ARPANET ARPANET [17,1.VGC]
011.rrr.rrr.rrr UCLNET University College London [PK]
012.rrr.rrr.rrr CYCLADES CYCLADES [VGC]
013.rrr.rrr.rrr Unassigned [JBP]
014.rrr.rrr.rrr TELENET TELENET [VGC]
015.rrr.rrr.rrr EPSS British Post Office EPSS [PK]
016.rrr.rrr.rrr DATAPAC DATAPAC [VGC]
017.rrr.rrr.rrr TRANSPAC TRANSPAC [VGC]
018.rrr.rrr.rrr LCSNET MIT LCS Network [43,10,DDC2]
019.rrr.rrr.rrr TYMNET TYMNET [VGC]
020.rrr.rrr.rrr DC-PR D.C. Packet Radio Network [VGC]
021.rrr.rrr.rrr EDN DCEC EDN [EC5]
022.rrr.rrr.rrr DIALNET DIALNET [26. 16,MRC]
023.rrr.rrr.rrr MITRE MITRE Cablenet [44,APS]
024.rrr.rrr.rrr BBN-LOCAL BBN Local Network 'SGC]
025.rrr.rrr.rrr RSRE-PPSN RSRE / PPSN [BD2]
026.rrr.rrr.rrr AUTODIN-II AUTODIN II [EC5]
027.rrr.rrr.rrr NOSC-LCCN NOSC / LCCN [KTP]
028.rrr.rrr.rrr WIDEBAND Wide Band Satellite Network [CJW2]
029.rrr.rrr.rrr DCN-COMSAT COMSAT Dist. Comp. Network [DLM1]
030.rrr.rrr.rrr DCN-UCL UCL Dist. Comp. Network [PK]
031.rrr.rrr.rrr BBN-SAT-TEST BBN SATNET Test Network [DM11]
032.rrr.rrr.rrr UCL-CR1 UCL Cambridge Ring 1 [PK]
033.rrr.rrr.rrr UCL-CR2 UCL Cambridge Ring 2 [PK]
034.rrr.rrr.rrr MATNET Mobile Access Terminal Net [DM11]
035.rrr.rrr.rrr NULL UCL/RSRE Null Network [BD2]
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Network Numbers

036. rrr. rrr. rrr SU-NET Stanford University Ethernet [MRC]
037.rrr.rrr.rrr DECNET Digital Equipment Network [DRL]

038.rrr.rrr.rrr DECNET-TEST Test Digital Equipment Net [DRL]

039 .rrr .rrr .rrr SRINET SRI Local Network [GEOF]

040.rrr.rrr.rrr CISLNET CISL Multics Network [CH2]

041.rrr.rrr.rrr BBN-LN-TEST BBN Local Network Testbed [KTP]

042. rrr. rrr. rrr SlNET LLL-S1-NET [EAK]

043.rrr.rrr.rrr INTELPOST COMSAT INTELPOST [OLM1]

044.rrr.rrr.rrr AMPRNET Aniature Radio Experiment Net [HM]

044. rrr. rrr. rrr-126.rrr.rrr.rrr Unassigned [JBP]

127. rrr. rrr. rrr Reserved [JBP]

Class B Networks

Internet Address Name Network References

128.000.rrr.rrr Reserved [JBP]

128.001.rrr.rrr-128.254.rrr.rrr Unassigned [JBP]

191.255.rrr.rrr Reserved [JBP]

Class C Networks

Internet Address Name Network References

192.000.001.rrr Reserved [JBP]

192.000.001.rrr-223.255.254.rrr Unassigned [JBP]

223.255.255.rrr Reserved [JBP]

Other Reserved Internet Addresses

Internet Address Name Network References

224.000.000.000-255.255.255.255 Reserved [JBP]
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Internet Version Numbers

ASSIGNED INTERNET VERSION NUMBERS

In the Internet Protocol (IP) [33] there is a field to identify the
version of the internetwork general protocol. This field is 4 bits
in size.

Assigned Internet Version Numbers

Decimal Octal Version References

0 0 Reserved [JBP]
1-3 1-3 Unassigned [JBP]

4 4 Internet Protocol [33,JBP]
5 5 ST Datagram Mode [20,JWF]

6-14 6-16 Unassigned [JBP]
15 17 Reserved [JBP]
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Internet Protocol Numbers

ASSIGNED INTERNET PROTOCOL NUMBERS

In the Internet Protocol (IP) [33] there is a field, called Protocol,

to identify the the next level protocol. This is an 8 bit field.

Assigned Internet Protocol Numbers

Decimal Octal Protoccl Numbers References

0 0 Reserved [JBP]
1 1 ICMP [53,JBP]
2 2 Unassigned [JBP]
3 3 Gateway-to-Gateway [48,49,VMS]
4 4 CMCC Gateway Monitoring Message [18,19,DFP]
5 5 ST [20,JWF]
6 6 TCP [34,JBP]
7 7 UCL [PK]
8 10 Unassigned [JBP]
9 11 Secure [VGC]

10 12 BBN RCC:Monitoring [VMS]
11 13 NVP [12,DC]
12 14 PUP [4,EAT3]
13 15 Pluribus [RDB2]
14 16 Telenet [RDB2]
15 17 XNET [25,JFH2]
16 20 Chaos [MOON]
17 21 User Datagram [42,JBP]
18 22 Multiplexing [13,JBP]
19 23 DCN [DLM1]
20 24 TAC Monitoring [55,RH6]

21-62 25-76 Unassigned [JBP]
63 77 any local network [JBP]
64 100 SATNET and Backroom EXPAK [DM11]
65 101 MIT Subnet Support [NC3]

66-68 102-104 Unassigned [JBP]
69 105 SATNET Monitoring [DM11]
70 106 Unassigned [JBP]
71 107 Internet Packet Core Utility [DM11]

72-75 110-113 Unassigned [JBP]
76 114 Backroom SATNET Monitoring [DM11]
77 115 Unassigned [JBP]
78 116 WIDEBAND Monitoring [DMI11]
79 117 WIDEBAND EXPAK [DM11]

80-254 120-376 Unassigned [JBP]
255 377 Reserved [JBP]
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ASSIGNED PORT or SOCKET NUMBERS

Ports are used in the TCP [34] and sockets are used in the AHHP
[28,17] to name the ends of logical connections which carry long term
conversations. For the purpose of providing services to unknown
callers a service contact socket is defined. This list specifies the
port or socket used by the server process as its contact socket. In
the AHHP an Initial Connection Procedure ICP [39,17] is used between
the user process and the server process to make the initial contact
and establish the long term connections leaving the contact socket
free to handle other callers. In the TCP no ICP is necessary since a
port may engage in many simultaneous connections.

To the extent possible these same port assignments are used with UDP
[42].

The assigned ports/sockets use a small part of the possible
port/socket numbers. The assigned ports/sockets have all except the
low order eight bits cleared to zero. The low order eight bits are
specified here.

Socket Assignments:

General Assignments:

Decimal Octal Description

0-63 0-77 Network Wide Standard Function
64-131 100-203 Hosts Specific Functions
132-223 204-337 Reserved for Future Use
224-255 340-377 Any Experimental Function
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Port or Socket Numbers

Specific Assignments:

Network Standard Functions

Decimal Octal Description References

1 1 Old Telnet [40,JBP]
3 3 Old File Transfer [27,11,24,JBP]
5 5 Remote Job Entry [6,17,JBP]
7 7 Echo [35,JBP]
9 11 Discard [32,JBP]
11 13 Who is on or SYSTAT [JBP]
13 15 Date and Time [JBP]
15 17 Who is up or NETSTAT [JBP]

17 21 Short Text Message [JBP]

19 23 Character generator or TTYTST [31,JBP]
21 25 New File Transfer [36,JBP]
23 27 New Telnet [41,JBP]
25 31 SMTP [54,JBP]
27 33 NSW User System w/COMPASS FE [14,RHT]
29 35 MSG-3 ICP [29,RHT]
31 37 MSG-3 Authentication [29,RHT]

33 41 Unassigned [JBP]
35 43 10 Station Spooler [JBP]
37 45 Time Server [22,JBP]
39 47 Unassigned [JBP]
41 51 Graphics [46,17,JBP]
42 52 Name Server [38,JBP]
43 53 WhoIs [JAKE]
45 55 Message Processing Module [37,JBP]
47 57 NI FTP [50,CJB]

49 61 RAND Network Graphics Conference [30,M02]

51 63 Message Generator Control [52,DFP]
53 65 AUTODIN II FTP [21,EC5]

55 67 ISI Graphics Language [3,RB6]
57 71 MTP [45,JBP]
59 73 New MIT Host Status [SWG]

61-63 75-77 Unassigned [JBP]
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Port or Socket Numbers

Host Specific Functions

Decimal Octal Description References

65 101 Unassigned [JBP]
67 103 Datacomput-er at CCA [8,JZS]
69 105 Unassigned [JBP]
69 105 Trivial File Transfer [47,KRS]
71 107 NETRJS (EBCDIC) at UCLA-CCN [5,17,RTB]

73 111 NETRJS (ASCII-68) at UCLA-CCN [5,17,RTB]
75 113 NETRJS (ASCII-63) at UCLA-CCN [5,17,RTB]
77 115 any private RJE server [JBP]
79 117 Name or Finger [23,17,KLH]
81 121 Unassigned [JBP]
83 123 MIT ML Device [MOON]
85 125 MIT ML Device [MOON]
87 127 any terminal link [JBP]
89 131 SU/MIT Telnet Gateway [MRC]
91 133 MIT Dover Spooler [EBM]
93 135 BBN RCC Accounting [DT]
95 137 SUPDUP [15,MRC]
97 141 Datacomputer Status [8,JZS]
99 143 CADC - NIFTP via UCL [PLH]
101 145 NPL - NIFTP via UCL [PLH]
103 147 BNPL - NIFTP via UCL [PLH]
105 151 CAMBRIDGE - NIFTP via UCL [PLH]
107 153 HARWELL - NIFTP via UCL [PLH]
109 155 SWURCC - NIFTP via UCL [PLH]
111 157 ESSEX - NIFTP via UCL [PLH]
113 161 RUTHERFORD - NIFTP via UCL [PLH]
115-129 163-201 Unassigned [JBP]
131 203 Datacomputer [8,JZS]

Reserved for Future Use

Decimal Octal Description References

132-223 204-337 Reserved [JBP]
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Port or Socket Numbers

Experimental Functions

Decimal Octal Description References

224-239 340-357 Unassigned [JBP]
241 361 NCP Measurement [9,JBP]
243 363 Survey Measurement [2,AV]
245 365 LINK [7.RDB2]
247 367 TIPSRV [RHT]
249-255 371-377 RSEXEC [51,RHT]

ASSIGNED LINK NUMBERS

The word "link" here refers to a field in the original ARPANET
Host/IMP interface leader. The link was originally defined as an 8
bit field. Some time after the ARPANET Host-to-Host (AHHP) protocol
was defined and, by now, some time ago the definition of this field
was changed to "Message-ID" and the length to 12 bits. The name link
now refers to the high order 8 bits of this 12 bit message-id field.
The low order 4 bits of the message-id field are to be zero unless
specifically specified otherwise for the particular protocol used on
that link. The Host/IMP interface is defined in BBN report 1822 [1].

Link Assignments:

Decimal Octal Description References

0 0 AHHP Control Messages [28,17,JBP]
1 1 Reserved [JBP]
2-71 2-107 AHHP Regular Messages [28,17,JBP]
72-150 110-226 Reserved [JBP]
151 227 CHAOS Protocol [MOON]
152 230 PARC Universal Protocol [4,EAT3]
153 231 TIP Status Reporting [JGH]
154 232 TIP Accounting [JGH]
155 233 Internet Protocol (regular) [33,JBP]
156-158 234-236 Internet Protocol (experimental) [33,JBP]
159-191 237-277 Measurements [9,VGC]
192-195 300-303 Unassigned [JBP]
196-255 304-377 Experimental Protocols [JBP]
224-255 340-377 NVP [12,17,DC]
248-255 370-377 Network Maintenance [JGH]

Postel [Page 10]

ro



RFC 790 September 1981
Assigned Numbers

Documents

DOCUMENTS

[1] BBN, "Specifications for the Interconnection of a Host and an
IMP", Report 1822, Bolt Beranek and Newman, Cambridge,
Massachusetts, May 1978.

[2] Bhushan, A., "A Report on the Survey Project", RFC 530,
NIC 11375, 22 June 1973.

[3] Bisbey, R., D. Hollingworth, and B. Britt, "Graphics Language
(version 2.1)", ISI/TM-80-18, USC/Information Sciences
Institute, July 1980.

[4] Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "PUP: An
Internetwork Architecture", XEROX Palo Alto Research Center,
CSL-79-10, July 1979; also in IEEE Transactions on
Communication, Volume COM-28, Number 4, April 1980.

[5] Braden, R., "NETRJS Protocol", RFC 740, NIC 42423,
22 November 1977. Also in [17].

[6] Bressler, B., "Remote Job Entry Protocol", RFC 407, NIC
12112, 16 October 72. Also in [17].

[7] Bressler, R., "Inter-Entity Communication -- An Experiment",
RFC 441, NIC 13773, 19 January 1973.

[8] CCA, "Datacomputer Version 5/4 User Manual", Computer
Corporation of America, August 1979.

[9] Cerf, V., "NCP Statistics", RFC 388, NIC 11360,
23 August 1972.

[10] Clark, D., "Revision of DSP Specification", Local Network Note
9, Laboratory for Computer Science, MIT, 17 June 1977.

[11] Clements, R., "FTPSRV -- Extensions for Tenex Paged Files",
RFC 683, NIC 32251, 3 April 1975. Also in [17].

[12] Cohen, D., "Specifications for the Network Voice Protocol
(NVP)", NSC Note 68, 29 January 1976. Also as USC/Information

Sciences Institute RR-75-39, March 1976, and as RFC 741,
NIC 42444, 22 November 1977. Also in [17].

[13] Cohen, D. and J. Postel, "Multiplexing Protocol", IEN 90,
USC/Information Sciences Institute, May 1979.

Postel [Page 11]

, .........................................., .............-.':----T,.... . .4 .



RFC 790 September 1981
Assigned Numbers

Documents

[14] COMPASS, "Semi-Annual Technical Report", CADD-7603-0411,
Massachusetts Computer Associates, 4 March 1976. Also as,
"National Software Works, Status Report No. I",
RADC-TR-76-276, Volume 1, September 1976. And COMPASS. "Second
Semi-Annual Report", CADD-7608-1611, Massachusetts Computer
Associates, 16 August 1976.

[15] Crispin, M., "SUPDUP Protocol", RFC 734, NIC 41953,
7 October 1977. Also in [17].

[16] Crispin, M. and I. Zabala, "DIALNET Protocols", Stanford
University Artificial Intelligence Laboratory, July 1978.

[17] Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook",
NIC 7104, for the Defense Communications Agency by SRI
International, Menlo Park, California, Revised January 1978.

[18] Flood Page, D. , "Gateway Monitoring Protocol", IEN 131,
February 1980.

[19] flood Page, D. , "CMCC Performance Measurement Message
Formats", IEN 157, September 1980.

[20] Forgie, J., "ST - A Proposed Internet Stream Protocol",
IEN 119, M.I.T. Lincoln Laboratory, September 1979.

[21] Forsdick, H., and A. McKenzie, "FTP Functional Specification",
Bolt Beranek and Newman, Report 4051, August 1979.

[22] Harrenstien, K., J. Postel, "Time Server", IEN 142,
April 1980. Also in [17].

[23] Harrenstien, K., "Name/Finger", RFC 742, NIC 42758,
30 December 1977. Also in [17].

[24] Harvey, B., "One More Try on the FTP", RFC 691, NIC 32700,
6 June 1975.

[25] Haverty, J., "XNET Formats for Internet Protocol Version 4",
IEN 158, October 1980.

[26] McCarthy, J. and L. Earnest, "DIALNET", Stanford University
Artificial Intelligence Laboratory, Undated.

[27] McKenzie, A., "File Transfer Protocol", RFC 454, NIC 14333,

16 February 1973.

Postel [Page 12]

i .... _ . " . k . ". _a . .. _ .. .. •:.



RFC 790 September 1981
Assigned Numbers

Documents

[28] McKenzie,A., "Host/Host Protocol for the ARPA Network",
NIC 8246, January 1972. Also in [17].

[29] NSW Protocol Committee, "MSG: The Interprocess Communication
Facility for the National Software Works", CADD-7612-2411,
Massachusetts Computer Associates. BBN 3237, Bolt Beranek and
Newman, Revised 24 December 1976.

[30] O'Brien. M., "A Network Graphical Conferencing System". RAND
Corporation, N-1250-ARPA, August 1979.

[31] Postel, J., "Character Generator Process". RFC 429, NIC 13281.
12 December 1972.

[32] Postel, J., "Discard Process", RFC 348, NIC 10427,
30 May 1972.

[33] Postel, J., ed., "Internet Protocol - DARPA Internet Program
Protocol Specification", RFC 791, USC/Information Sciences
Institute, September 1981.

[34] Postel, J., ed., "Transmission Control Protocol - DARPA
Internet Program Protocol Specification", RFC 793,
USC/Information Sciences Institute, September 1981.

[35] Postel, J., "Echo Process", RFC 347, NIC 10426, 30 May 1972.

[36] Postel. J., "File Transfer Protocol", RFC 765, IEN 149,
June 1980.

[37] Postel, J., "Internet Message Protocol", RFC 759, IEN 113,

USC/Informatio Sciences Institute, August 1980.

[38] Postel, J., "Name Server", lEN 116. USC/Information Sciences'1. 8 Institute, August 1979.

.1 [39] Postel, J., "Official Initial Connection Protocol", NIC 7101,
' 11 June 1971. Also in [17].

[40] Postel, J., "Telnet Protocol", RFC 318, NIC 9348,
3 April 1972.

[41] Postel, J., "Telnet Protocol Specification", RFC 764, IEN 148,
June 1980.

[42] Postel, J., "User Datagram Protocol", RFC 768 USC/Information
Sciences Institute, August 1980.

Postel [Page 13]

- ' ' ,-'A&



-. __ -- --_.a

RFC 790 September 1981
Assigned Numbers

Documents

[43] Reed, D. , "Protocols for the LCS Network", Local Network Note
3, Laboratory for Computer Science, MIT, 29 November 1976.

[44] Skelton, A., S. Holmgren, and D. Wood, "The MITRE Cablenet
Project", IEN 96, April 1979.

[45] Sluizer, S., and J. Postel, "Mail Transfer Protocol", RFC 780,
USC/Information Sciences Institute, May 1981.

[46] Sproull, R., and E. Thomas. "A Networks Graphics Protocol",
NIC 24308, 16 August 1974. Also in [17].

[47] Sollins, K., "The TFTP Protocol (revision 2)", RFC 783,
MIT/LCS, June 1981.

[48] Strazisar, V., "Gateway Routing: An Implementation
Specification", IEN 30, Bolt Berenak and Newman, April 1979.

[49] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Berenak
and Newman, August 1979.

[50] The High Level Protocol Group, "A Network Independent File
Transfer Protocol", INWG Protocol Note 86, December 1977.

[51] Thomas, R., "A Resource Sharing Executive for the ARPANET",
AFIPS Conference Proceedings, 42:155-163, NCC, 1973.

[52] Flood Page, D., "A Simple Message Generator", IEN 172, Bolt
Berenak and Newman, March 1981.

[53] Postel, J., "Internet Control Message Protocol - DARPA
Internet Program Protocol Specification", RFC 792,
USC/Information Sciences Institute, September 1981.

[54] Postel, J., "Simple Mail Transfer Protocol", RFC 788,

USC/Information Sciences Institute, September 1981.

[55] Littauer, B., "A Host Monitoring Protocol"", IEN 197, Bolt
Berenak and Newman, September 1981.

Postel [Page 14]

L A ! " ,



RFC 790 September 1981
Assigned Numbers

People

PEOPLE

[DCA2] Don Allen BBN Allen@BBND
[CJBI Chris Bennett UCL UKSAT@ISIE
[RB6] Richard Bisbey ISI Bisbey@ISIB
[RTB] Bob Braden UCLA Braden@ISIA
[RDB2] Robert Bressler BBN Bressler@BBNE
[EC5] Ed Cain DCEC cain@EDN-Unix
[VGC] Vint Cerf ARPA Cerf@ISIA
[NC3] J. Noel Chiappa MIT JNC@MIT-XX
[SGC] Steve Chipman BBN Chipman@BBNA
[DDC2] David Clark MIT Clark@MIT-Multics
[DC] Danny Cohen 151 Cohen@ISIB
[MRC] Mark Crispin Stanford Admin.MRC@SU-SCORE
[BD2] Brian Davies RSRE T45@ISIE
[JAKE] Jake Feinler SRI Feinler@SRI-KL
[DFP] David Flood Page BBN DFloodPage@BBNE
[JWF1 Jim Forgie LL Forgie@BBNC
[SWG] Stu Galley MIT SWG@MIT-DMS
[GEOF] Geoff Goodfellow SRI Geoff@DARCOM-KA
[KLH] Ken Harrenstien MIT KLH@MIT-AI
[JFH2] Jack Haverty BBN JHaverty@BBN-Unix
[JGH] Jim Herman BBN Herman@BBNE
[PLH] Peter Higginson UCL UKSATt@JS1E
[RH6] Robert Hinden BBN Hinden@BBNE
[CH2] Charles Hornig Honeywell Hornig@MIT-Multics
[EAK] Earl Killian LLL EAK@MIT-MC
[PK] Peter Kirstein UCL Kirstein@ISIA
[ORL] David Lyons DEC Lyons@DEC-2136
[HM] Hank Magnuski----
[JEM] Jim Mathis SRI Mathis@SRI-KL
[DM11] Dale McNeill BBN DMcNeill@BBNE
[OLMI] David Mills COMSAT Mills@ISIE
[MOON] David Moon MIT Moon@MIT-MC
[EBM] Eliot Moss MIT EBM@MIT-XX
[M02] Michael O'Brien RAND OBrien@RAND-Unix
[KTP] Ken Pogran BBN Pogran@BBND
[JBP] Jon Postel ISI Postel@ISIF
[JZS] Joanne Sattely CCA JZS@CCA
[APS] Anita Skelton MITRE skelton@MITRE
[KRS] Karen Sollins MIT Sollins@MIT-XX
[VMS] Virginia Strazisar BBN Strazisar@BBNA
[EAT3] Ed Taft XEROX Taft.PA@PARC
[DT] Dan Tappan BBN Tappan@BBNG
[RHT] Robert Thomas BBN Thomas@BBNA
[AV] Al Vezza MIT AV@MIT-XX
[CJW2] Cliff Weinstein 1-1, cjw@LL-11

Postel [Page 15]



RFC: 791

INTERNET PROTOCOL

DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION

September 1981

prepared for

Defense Advanced Research Projects Agency

Information Processing Techniques Office
1400 Wilson Boulevard

Arlington, Virginia 22209

by

Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, California 90291



September 1981
Internet Protocol

TABLE OF CONTENTS

PREFACE..........................................................iii

1. INTRODUCTION......................................................1I

1.1 Motivation......................................................1
1.2 Scope...........................................................I
1.3 Interfaces......................................................1
1.4 Operation...................................................... 2

2. OVERVIEW.......................................................... 5

2.1 Relation to Other Protocols.................................... 9
2.2 Model of Operation............................................. 5
2.3 Function Description........................................... 7
2.4 Gateways....................................................... 9

3. SPECIFICATION.....................................................11

3.1 Internet Header Format........................................ 11
3.2 Discussion.................................................... 23
3.3 Interfaces.................................................... 31

APPENDIX A: Examples & Scenarios.................................... 34
*APPENDIX B: Data Transmission Order................................. 39

GLOSSARY............................................................. 41

REFERENCES........................................................... 45

[Page i]



September 1981

Internet Protocol

* [Page ii]



September 1981

Internet Protocol

PREFACE

This document specifies the DoD Standard Internet Protocol. This
document is based on six earlier editions of the ARPA Internet Protocol

Specification, and the present text draws heavily from them. There have
been many contributors to this work both in terms of concepts and in
terms of text. This edition revises aspects of addressing, error
handling, option codes, and the security, precedence, compartments, and
handling restriction features of the internet protocol.

Jon Postel

Editor
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1. INTRODUCTION

1.1. Motivation

The Internet Protocol is designed for use in interconnected systems of
packet-switched computer communication networks. Such a system has
been called a "catenet" [1]. The internet protocol provides for
transmitting blocks of data called datagrams from sources to
destinations, where sources and destinations are hosts identified by
fixed length addresses. The internet protocol also provides for
fragmentation and reassembly of long datagrams, if necessary, for
transmission through "small packet" networks.

1.2. Scope

The internet protocol is specifically limited in scope to provide the
functions necessary to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected system
of networks. There are no mechanisms to augment end-to-end data
reliability, flow control, sequencing, or other services commonly
found in host-to-host protocols. The internet protocol can capitalize
on the services of its supporting networks to provide various types
and qualities of service.

1.3. Interfaces

This protocol is called on by host-to-host protocols in an internet
environment. This protocol calls on local network protocols to carry
the internet datagram to the next gateway or destination host.

For example, a TCP module would call on the internet module to take a
TCP segment (including the TCP header and user data) as the data
portion of an internet datagram. The TCP module would provide the
addresses and other parameters in the internet header to the internet
module as arguments of the call. The internet module would then
create an internet datagram and call on the local network interface to
transmit the internet datagram.

In the ARPANET case, for example, the internet module would call on a
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local net module which would add the 1822 leader [2] to the internet
datagram creating an ARPANET message to transmit to the IMP. Tile
ARPANET address would be derived from the internet address by the
local network interface and would be the address of some host in the
ARPANET, that host might be a gateway to other networks.

1.4. Operation

The internet protocol implements two basic functions: addressing and

fragmentation.

The internet modules use the addresses carried in the internet header
to transmit internet datagrams toward their destinations. The
selection of a path for transmission is called routing.

The internet modules use fields in the internet header to fragment and
reassemble internet datagrams when necessary for transmission through
"small packet" networks.

The model of operation is that an internet module resides in each host
engaged in internet communication and in each gateway that
interconnects networks. These modules share common rules for
interpreting address fields and for fragmenting and assembling
internet datagrams. In addition, these modules (especially in
gateways) have procedures for making routing decisions and other
functions.

The internet protocol treats each internet datagram as an independent
entity unrelated to any other internet datagram. There are no
connections or logical circuits (virtual or otherwise).

The internet protocol uses four key mechanisms in providing its
service: Type of Service, Time to Live, Options, and Header Checksum.

The Type of Service is used to indicate the quality of the service
desired. The type of service is an abstract or generalized set of

parameters which characterize the service choices provided in the
networks that make up the internet. This type of service indication
is to be used by gateways to select the actual transmission parameters
for a particular network, the network to be used for the next hop, or
the next gateway when routing an internet datagram.

The Time to Live is an indication of an upper bound on the lifetime of
an internet datagram. It is set by the sender of the datagram and
reduced at the points along the route where it is processed. If the
time to live reaches zero before the internet datagram reaches its
destination, the internet datagram is destroyed. The time to live can
be thought of as a self destruct time limit.
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The Options provide for control functions needed or useful in some
situations but unnecessary for the most common communications. The
options include provisions for timestamps, security, and special
routing.

The Header Checksum provides a verification that the information used
in processing internet datagram has been transmitted correctly. The
data may contain errors. If the header checksum fails, the internet
datagram is discarded at once by the entity which detects the error.

The internet protocol does not provide a reliable communication
facility. There are no acknowledgments either end-to-end or
hop-by-hop. There is no error control for data, only a header
checksum. There are no retransmissions. There is no flow control.

Errors detected may be reported via the Internet Control Message
Protocol (ICMP) [3] which is implemented in the internet protocol
module.
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2. OVERVIEW

2.1. Relation to Other Protocols

The following diagram illustrates the place of the internet protocol
in the protocol hierarchy:

+--------+ 4-- +---- + -- +

ITelneti I FTP I I TFTPI ... I ... I
+--------+ +-- + +- + +--+

I I I I
+-----+ +---+ +--+

I TCP I I UDP I ... I ... I
+ -. .+ + -.. .+ + -. .+

I II
+----------------------------------

I Internet Protocol & ICMP I
+-------------------------------------

I
----------------------------- +

I Local Network Protocol I
----------------------------- +

Protocol Relationships

Figure 1.

Internet protocol interfaces on one side to the higher level
host-to-host protocols and on the other side to the local network
protocol. In this context a "local network" may be a small network in
a building or a large network such as the ARPANET.

2.2. Model of Operation

The model of operation for transmitting a datagram from one
application program to another is illustrated by the following
scenario:

We suppose that this transmission will involve one intermediate
gateway.

The sending application program prepares its data and calls on its
local internet module to send that data as a datagram and passes the
destination address and other parameters as arguments of the call.

The internet module prepares a datagram header and attaches the data
to it. The internet module determines a local network address for
this internet address, in this case it is the address of a gateway.
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It sends this datagram and the local network address to the local
network interface.

The local network interface creates a local network header, and
attaches the datagram to it, then sends the result via the local
network.

The datagram arrives at a gateway host wrapped in the local network
header, the local network interface strips off this header, and
turns the datagram over to the internet module. The internet module
determines from the internet address that the datagram is to be
forwarded to another host in a second network. The internet module
determines a local net address for the destination host. It calls
on the local network interface for that network to send the
datagram.

This local network interface creates a local network header and
attaches the datagram sending the result to the destination host.

At this destination host the datagram is stripped of the local net
header by the local network interface and handed to the internet
module.

The internet module determines that the datagram is for an
application program in this host. It passes the data to the
application program in response to a system call, passing the source
address and other parameters as results of the call.

Application Application
Program Program

\ /

Internet Module Internet Module Internet Module

LNI-1 LNI-1 LNI-2 LNI-2

Local Network 1 Local Network 2

Transmission Path

Figure 2
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2.3. Function Description

The function or purpose of Internet Protocol is to move datagrams
through an interconnected set of networks. This is done by passing
the datagrams from one internet module to another until the
destination is reached. The internet modules reside in hosts and
gateways in the internet system. The datagrams are routed from one
internet module to another through individual networks based on the
interpretation of an internet address. Thus, one important mechanism
of the internet protocol is the internet address.

In the routing of messages from one internet module to another,
datagrams may need to traverse a network whose maximum packet size is
smaller than the size of the datagram. To overcome this difficulty, a
fragmentation mechanism is provided in the internet protocol.

Addressing

A distinction is made between names, addresses, and routes [4]. A
name indicates what we seek. An address indicates where it is. A
route indicates how to get there. The internet protocol deals
primarily with addresses. It is the task of higher level (i.e.,
host-to-host or application) protocols to make the mapping from
names to addresses. The internet module maps internet addresses to
local net addresses. It is the task of lower level (i.e., local net
or gateways) procedures to make the mapping from local net addresses
to routes.

Addresses are fixed length of four octets (32 bits). An address
begins with a network number, followed by local address (called the
"rest" field). There are three formats or classes of internet
addresses: in class a, the high order bit is zero, the next 7 bits
are the network, and the last 24 bits are the local address: in
class b, the high order two bits are one-zero, the next 14 bits are
the network and the last 16 bits are the local address; in class c,
the high order three bits are one-one-zero, the next 21 bits are the
network and the last 8 bits are the local address.

Care must be taken in mapping internet addresses to local net
addresses; a single physical host must be able to act as if it were
several distinct hosts to the extent of using several distinct
internet addresses. Some hosts will also have several physical
interfaces (multi-homing).

That is, provision must be made for a host to have several physical
interfaces to the network with each having several logical internet
addresses.
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Examples of address mappings may be found in "Address Mappings" [5].

Fragmentation

Fragmentation of an internet datagram is necessary when it
originates in a local net that allows a large packet size and must
traverse a local net that limits packets to a smaller size to reach
its destination.

An internet datagram can be marked "don't fragment." Any internet
datagram so marked is not to be internet fragmented under any
circumstances. If internet datagram marked don't fragment cannot be
delivered to its destination without fragmenting it, it is to be
discarded instead.

Fragmentation, transmission and reassembly across a local network
which is invisiole to the internet protocol module is called
intranet fragmentation and may be used [6].

The internet fragmentation and reassembly procedure needs to be able
to break a datagram into an almost arbitrary number of pieces that
can be later reassembled. The receiver of the fragments uses the
identification field to ensure that fragments of different datagrams
are not mixed. The fragment offset field tells the receiver the
position of a fragment in the original datagram. The fragment
offset and length determine the portion of the original datagram
covered by this fragment. The more-fragments flag indicates (by
being reset) the last fragment. These fields provide sufficient
information to reassemble datagrams.

The identification field is used to distinguish the fragments of one

datagram from those of another. The originating protocol module of
an internet datagram sets the identification field to a value that
must be unique for that source-destination pair and protocol for the
time the datagram will be active in the internet system. The
originating protocol module of a complete datagram sets the
more-fragments flag to zero and the fragment offset to zero.

To fragment a long internet datagram, an internet protocol module

(for example, in a gateway), creates two new internet datagrams and
copies the contents of the internet header fields from the long
datagram into both new internet headers. The data of the long
datagram is divided into two portions on a 8 octet (64 bit) boundary
(the second portion might not be an integral multiple of 8 octets,
but the first must be). Call the number of 8 octet blocks in the
first portion NFB (for Number of Fragment Blocks). The first
portion of the data is placed in the first new internet datagram,
and the total length field is set to the length of the first
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datagram. The more-fragments flag is set to one. The second
portion of the data is placed in the second new internet datagram,
and the total length field is set to the length of the second
datagram. The more-fragments flag carries the same value as the
long datagram. The fragment offset field of the second new internet
datagram is set to the value of that field in the long datagram plus
NFB.

This procedure can be generalized for an n-way split, rather than
the two-way split described.

To assemble the fragments of an internet datagram, an internet
protocol module (for example at a destination host) combines
internet datagrams that all have the same value for the four fields:
identification, source, destination, and protocol. The combination
is done by placing the data portion of each fragment in the relative
position indicated by the fragment offset in that fragment's
internet header. The first fragment will have the fragment offset
zero, and the last fragment will have the more-f-agments flag reset
to zero.

2.4. Gateways

Gateways implement internet protocol to forward datagrams between
networks. Gateways also implement the Gateway to Gateway Protocol
(GGP) [7] to Loordinate routing and other internet control
information.

In a gateway the higher level protocols need not be implemented and
the GGP functions are added to the IP module.

+-----------------------------------------

Internet Protocol & ICMP & GGPI
---------------------------------------------

I I
----------------- -----------------

I Local Net I I Local Net I
----------------- +-----------------

Gateway Protocols

Figure 3.
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3. SPECIFICATION

3.1. Internet Header Format

A summary of the contents of the internet header follows:

0 1 2 3
01234567890123456789012345678901

IVersioni IHL IType of Servicel Total Length

I Identification IFlagsI Fragment Offset I

I Time to Live I Protocol I Header Checksum I

Source Address

Destination Address

Options I Padding I

Example Internet Datagram Header

Figure 4.

Note that each tick mark represents one bit position.

Version: 4 bits

The Version field indicates the format of the internet header. This
document describes version 4.

IHL: 4 bits

Internet Header Length is the length of the internet header in 32
bit words, and thus points to the beginning of the data. Note that
the minimum value for a correct header is 5.
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Type of Service: 8 bits

The Type of Service provides an indication of the abstract
parameters of the quality of service desired. These parameters are
to be used to guide the selection of the actual service parameters
when transmitting a datagram through a particular network. Several
networks offer service precedence, which somehow treats high
precedence traffic as more important than other traffic (generally
by accepting only traffic above a certain precedence at time of high
load). The major choice is a three way tradeoff between low-delay,
high-reliability, and high-throughput.

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay, 1 = Low Delay.
Bits 4: 0 = Normal Throughput, 1 = High Throughput.
Bits 5: 0 = Normal Relibility, 1 = High Relibility.
Bit 6-7: Reserved for Future Use.

0 1 2 3 4 5 6 7
------- 1- - --- +---------------

II I I I I I
1 PRECEDENCE I D T R 1 0 0

II I I I I I
+ -.. ..- + -.. + -.. .. +- - ... + -. .+-..+

Precedence

111 - Network Control
110 - Internetwork Control
101 - CRITIC/ECP
100 - Flash Override
011 - Flash
010 - Immediate
001 - Priority
000 - Routine

The use of the Delay, Throughput, and Reliability indications may
increase the cost (in some sense) of the service. In many networks
better performance for one of these parameters is coupled with worse
performance on another. Except for very unusual cases at most two
of these three indications should be set.

The type of service is used to specify the treatment of the datagram
during its transmission through the internet system. Example
mappings of the internet type of service to the actual service
provided on networks such as AUTODIN II, ARPANET, SATNET, and PRNET
is given in "Service Mappings" [8].

[Page 12]
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The Network Control precedence designation is intended to be used
w:*hin a network only. The actual use and control of that
designation is up to each network. The Internetwork Control
designation is intended for use by gateway control originators only.
If the actual use of these precedence designations is of concern to
a particular network, it is the responsibility of that network to
control the access to, and use of, those precedence designations.

Total Length: 16 bits

Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the length of
a datagram to be up to 65,535 octets. Such long datagrams are
impractical for most hosts and networks. All hosts must be prepared
to accept datagrams of up to 576 octets (whether they arrive whole
or in fragments). It is recommended that hosts only send datagrams
larger than 576 octets if they have assurance that the destination
is prepared to accept the larger datagrams.

The number 576 is selected to allow a reasonable sized data block to
be transmitted in addition to the required header information. For
example, this size allows a data block of 512 octets plus 64 header
octets to fit in a datagram. The maximal internet header is 60
octets, and a typical internet header is 20 octets, allowing a
margin for headers of higher level protocols.

Identification: 16 bits

An identifying value assigned by the sender to aid in assembling the
fragments of a datagram.

Flags: 3 bits

Various Control Flags.

Bit 0: reserved, must be zero
Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.
Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

0 1 2
+---+------

I IDIMI
I0IFIFI

Fragment Offset: 13 bits

This field indicates where in the datagram this fragment belongs.

[Page 13]
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The fragment offset is measured in units of 8 octets (64 bits). The

first fragment has offset zero.

Time to Live: 8 bits

This field indicates the maximum time the datagram is allowed to
remain in the internet system. If this field contains the value

zero, then the datagram must be destroyed. This field is modified
in internet header processing. The time is measured in units of
seconds, but since every module that processes a datagram must
decrease the TTL by at least one even if it process the datagram in
less than a second, the TTL must be thought of only as an upper
bound on the time a datagram may exist. The intention is to cause
undeliverable datagrams to be discarded, and to bound the maximum
datagram lifetime.

Protocol: 8 bits

This field indicates the next level protocol used in the data
portion of the internet datagram. The values for various protocols

are specified in "Assigned Numbers" [9].

Header Checksum: 16 bits

A checksum on the header only. Since some header fields change
(e.g., time to live), this is recomputed and verified at each point
that the internet header is processed.

The checksum algorithm is:

The checksum field is the 16 bit one's complement of the one's

complement sum of all 16 bit words in the header. For purposes of
computing the checksum, the value of the checksum field is zero.

This is a simple to compute checksum and experimental evidence
indicates it is adequate, but it is provisional and may be replaced

by a CRC procedure, depending on further experience.

Source Address: 32 bits

The source address. See section 3.2.

Destination Address: 32 bits

The destination address. See section 3.2.
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Options: variable

The options may appear or not in datagrams. They must be
implemented by all IP modules (host and gateways). What is optional
is their transmission in any particular datagram, not their
implementation.

In some environments the security option may be required in all
datagrams.

The option field is variable in length. There may be zero or more
options. There are two cases for the format of an option:

Case 1: A single octet of option-type.

Case 2: An option-type octet, an option-length octet, and the
actual option-data octets.

The option-length octet counts the option-type octet and the
option-length octet as well as the option-data octets.

The option-type octet is viewed as having 3 fields:

I bit copied flag,
2 bits option class,
5 bits option number.

The copied flag indicates that this option is copied into all
fragments on fragmentation.

0 = not copied
1 = copied

The option classes are:

0 = control
I = reserved for future use

2 = debugging and measurement
3 = reserved for future use

[Page 15]
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The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

0 0 End of Option list. This option occupics only

1 octet: it has no length octet.
0 1 - No Operation. This option occupies only 1

octet; it has no length octet.
0 2 11 Security. Used to carry Security,

Compartmentation, User Group (TCC), and
Handling Restriction Codes compatible with DOD
requirements.

0 3 var. Loose Source Routing. Used to route the
internet datagram based on information
supplied by the source.

o 9 var. Strict Source Routing. Used to route the
internet datagram based on information
supplied by the source.

0 7 var. Record Route. Used to trace the route an
internet datagram takes.

0 8 4 Stream ID. Used to carry the stream
identifier.

2 4 var. Internet Timestamp.

Specific Option Definitions

End of Option List

-----------

-----------

Type=O

This option indicates the end of the option list. This might
not coincide with the end of the internet header according to
the internet header length. This is used at the end of all
options, not the end of each option, and need only be used if
the end of the options would not otherwise coincide with the end
of the internet header.

May be copied, introduced, or deleted on fragmentation, or for
any other reason.
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No Operation

-----------
I000000011
-----------

Type=1

This option may be used between options, for example, to align
the beginning of a subsequent option on a 32 bit boundary.

May be copied, introduced, or deleted on fragmentation, or for

any other reason.

Security

This option provides a way for hosts to send security,
compartmentation, handling restrictions, and TCC (closed user
group) parameters. The format for this option is as follows:

+-------------- ---------,---------------

1100000101000010111SSS SSSICCC CCCIHHH HHHI TCC I
+------------- -- ------------------,,
Type=l30 Length=11

Security (S field): 16 bits

Specifies one of 16 levels of security (eight of which are
reserved for future use).

00000000 00000000 - Unclassified
11110001 00110101 - Confidential
01111000 10011010 - EFTO
10111100 01001101 - MMMM
01011110 00100110 - PROG
10101111 00010011 - Restricted
11010111 10001000 - Secret
01101011 11000101 - Top Secret
00110101 11100010 - (Reserved for future use)
10011010 11110001 - (Reserved for future use)
01001101 01111000 - (Reserved for future use)
00100100 10111101 - (Reserved for future use)
00010011 01011110 - (Reserved for future use)
10001001 10101111 - (Reserved for future use)
11000100 11010110 - (Reserved for future use)
11100010 01101011 - (Reserved for future use)
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Compartments (C field): 16 bits

An all zero value is used when the information transmitted is
not compartmented. Other values for the compartments field
may be obtained from the Defense Intelligence Agency.

Handling Restrictions (H field): 16 bits

The values for the control and release markings are
alphanumeric digraphs and are defined in the Defense
Intelligence Agency Manual DIAM 65-19, "Standard Security
Markings".

Transmission Control Code (TCC field): 24 bits

Provides a means to segregate traffic and define controlled
communities of interest among subscribers. The TCC values are
trigraphs, and are available from HQ DCA Code 530.

Must be copied on fragmentation. This option appears at most
once in a datagram.

Loose Source and Record Route

+---------- --------------------------- II---------+
1100000111 length I pointerl route data I
+---------- --------------------------- II ---------+
Type=131

The loose source and record route (LSRR) option provides a means
for the source of an internet datagram to supply routing
information to be used by the gateways in forwarding the
datagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length-3 octets of route
data. The third octet is the pointer into the route data
indicating the octet which begins the next source address to be
processed. The pointer is relative to this option, and the
smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is
greater than the length, the source route is empty (and the
recorded route full) and the routing is to be based on the
destination address field.

[Page 18]
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If the address in destination address field has been reached and
the pointer is not greater than the length, the next address in
the source route replaces the address in the destination address
field, and the recorded route address replaces the source
address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet
address as known in the environment into which this datagram is
being forwarded.

This procedure of replacing the source route with the recorded
route (though it is in the reverse of the order it must be in to
be used as a source route) means the option (and the IP header
as a whole) remains a constant length as the datagram progresses
through the internet.

This option is a loose source route because the gateway or host
IP is allowed to use any route of any number of other
intermediate gateways to reach the next address in the route.

Must be copied on fragmentation. Appears at most once in a
datagram.

Strict Source and Record Route

---------------------- +--------------- I---------
1100010011 length I pointerl route data I
+---------+ ---------------------------- I ---------+
Type=137

The strict source and record route (SSRR) option provides a
means for the source of an internet datagram to supply routing
information to be used by the gateways in forwarding the

Udtagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length-3 octets of route
data. The third octet is the pointer into the route data
indicating the octet which begins the next source address to be
processed. The pointer is relative to this option, and the
smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is

greater than the length, the source route is empty (and the
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recorded route full) and the routing is to be based on the
destination address field.

If the address in destination address field has been reached and
the pointer is not greater than the length, the next address in
the source route replaces the address in the destination address
field, and the recorded route address replaces the source
address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet
address as known in the environment into which this datagram is
being forwarded.

This procedure of replacing the source route with the recorded
route (though it is in the reverse of the order it must be in to
be used as a source route) means the option (and the IP header
as a whole) remains a constant length as the datagram progresses
through the internet.

This option is a strict source route because the gateway or host
IP must send the datagram directly to the next address in the
source route through only the directly connected network
indicated in the next address to reach the next gateway or host

specified in the route.

Must be copied on fragmentation. Appears at most once in a

datagram.

Record Route

---------- --------------------------- II ---------+
1000001111 length I pointeri route data I
+----------+--------------------------- I---------+

Type=7

The record route option provides a means to record the route of

an internet datagram.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length-3 octets of route

data. The third octet is the pointer into the route data
indicating the octet which begins the next area to store a route
address. The pointer is relative to this option, and the
smallest legal value for the pointer is 4.

A recorded route is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is
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greater than the length, the recorded route data area is full.
The originating host must compose this option with a large
enough route data area to hold all the address expected. The
size of the option does not change due to adding addresses. The
intitial contents of the route data area must be zero.

When an internet module routes a datagram it checks to see if
the record route option is present. If it is, it inserts its
own internet address as known in the environment into which this
datagram is being forwarded into the recorded route begining at
the octet indicated by the pointer, and increments the pointer
by four.

If the route data area is already full (the pointer exceeds the
length) the datagram is forwarded without inserting the address
into the recorded route. If there is some room but not enough
room for a full address to be inserted, the original datagram is
considered to be in error and is discarded. In either case an
ICMP parameter problem message may be sent to the source
host [3].

Not copied on fragmentation, goes in first fragment only.
Appears at most once in a datagram.

Stream Identifier

------ 1------------+--------------------------

l10001000I0OOOOO1l Stream ID I
+------------------+--------------------------

Type=136 Length:4

This option provides a way for the 16-bit SATNET stream
identifier to be carried through networks that do not support
the stream concept.

Must be copied on fragmentation. Appears at most once in a

datagram.
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Internet Timestamp

+------------------------------------

I01000100l length I pointerloflwlflgl
------------------------ +------------

I internet address I
+------------------+-------------+-------------

I timestamp I
+-----------------4--------------+-------------

Type = 68

The Option Length is the number of octets in the option counting
the type, length, pointer, and overflow/flag octets (maximum
length 40).

The Pointer is the number of octets from the beginning of this
option to the end of timestamps plus one (i.e., it points to the
octet beginning the space for next timestamp). The smallest
legal value is 5. The timestamp area is full when the pointer
is greater than the length.

The Overflow (oflw) [4 bits] is the number of IP modules that
cannot register timestamps due to lack of space.

The Flag (flg) [4 bits] values are

0 -- time stamps only, stored in consecutive 32-bit words,

1 -- each timestamp is preceded with internet address of the
4registering entity,

3 -- the internet address fields are prespecified. An IP
module only registers its timestamp if it matches its own
address with the next specified internet address.

The Timestamp is a right-justified, 32-bit timestamp in
milliseconds since midnight UT. If the time is not available in
milliseconds or cannot be provided with respect to midnight UT
then any time may be inserted as a timestamp provided the high
order bit of the timestamp field is set to one to indicate the
use of a non-standard value.

The originating host must compose this option with a large
enough timestamp data area to hold all the timestamp information
expected. The size of the option does not change due to adding
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timestamps. The intitial contents of the timestamp data area
must be zero or internet address/zero pairs.

If the timestamp data area is already full (the pointer exceeds
the length) the datagram is forwarded without inserting the
timestamp, but the overflow count is incremented by one.

If there is some room but not enough room for a full timestamp
to be inserted, or the overflow count itself overflows, the
original datagram is considered to be in error and is discarded.
In either case an ICMP parameter problem message may be sent to

the source host [3].

The timestamp option is not copied upon fragmentation. It is
carried in the first fragment. Appears at most once in a
datagram.

Padding: variable

The internet header padding is used to ensure that the internet

header ends on a 32 bit boundary. The padding is zero.

3.2. Discussion

The implementation of a protocol must be robust. Each implementation
must expect to interoperate with others created by different
individuals. While the goal of this specification is to be explicit

about the protocol there is the possibility of differing
interpretations. In general, an implementation must be conservative
in its sending behavior, and liberal in its receiving beha,,ior. That
is, it must be careful to send well-formed datagrams, but must accept

any datagram that it can interpret (e.g., not object to technical
errors where the meaning is still clear).

The basic internet service is datagram oriented and provides for the
fragmentation of datagrams at gateways, with reassEmbly taking place
at the destination internet protocol module in the destination host.
Of course, fragmentation and reassembly of detagrams within a network

or by private agreement between the gateways of a network is also
allowed since this is transparent to the internet protocols and the
higher-level protocols. This transparent type of fragmentation and
reassembly is termed "network-dependent" (or intranet) fragmentation
and is not discussed further here.

Internet addresses distinguish sources and destinations to the host
level and provide a protocol field as well. It is assumed that each
protocol will provide for whatever multiplexing is necessary within a
host.

[Page 23]

. I.



i 
- v  

-' ' . . -- -- - ,''P° -*4 - ...

September 1981
Internet Protocol
Specification

Addressing

To provide for flexibility in assigning address to networks and
allow for the large number of small to intermediate sized networks
the interpretation of the address field is coded to specify a small
number of networks with a large number of host, a moderate number of
networks with a moderate number of hostr, and a large number of
networks with a small number of hosts. In addition there is an
escape code for extended addressing mode.

Address Formats:

High Order Bits Format Class

0 - bits of net, 24 bits of host a
10 14 bits of net, 16 bits of host b
110 21 bits of net, 8 bits of host c

111 escape to extended addressing mode

A value of zero in the network field means this network. This is
only used in certain ICMP messages. The extended addressing mode
is undefined. Both of these features are reserved for future use.

The actual values assigned for network addresses is given in
"Assigned Numbers" [9].

The local address, assigned by the local network, must allow for a
single physical host to act as several distinct internet hosts.
That is, there must be a mapping between internet host addresses and
network/host interfaces that allows several internet addresses to
correspond to one interface. It musi also be allowed for a host to
have several physical interfaces and to treat the datagrams from
several of them as if they were all addressed to a single host.

Address mappings between internet addresses and addresses for
ARPANET, SATNET, PRNET, and other networks are described in "Address
Mappings" [5].

Fragmentation and Reassembly.

The internet identification field (ID) is used together with the
source and destination address, and the protocol fields, to identify
datagram fragments for reassembly.

The More Fragments flag bit (MF) is set if the datagram is not the
last fragment. The Fragment Offset field identifies the fragment
location, relative to the beginning of the original unfragmented
datagram. Fragments are counted in units of 8 octets. The
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fragmentation strategy is designed so than an unfragmented datagram
has all zero fragmentation information (MF = 0, fragment offset =
0). If an internet datagram is fragmented, its data portion must be
broken on 8 octet boundaries.

This format allows 2**13 = 8192 fragments of 8 octets each for a
total of 65,536 octets. Note that this is consistent with the the
datagram total length field (of course, the header is counted in the
total length and not in the fragments).

When fragmentation occurs, some options are copied, but others
remain with the first fragment only.

Every internet module must be able to forward a datagram of 68
octets without further fragmentation. This is because an internet
header may be up to 60 octets, and the minimum fragment is 8 octets.

Every internet destination must be able to receive a datagram of 576

octets either in one piece or in fragments to be reassembled.

The fields which may be affected by fragmentation include:

(1) options field
(2) more fragments flag
(3) fragment offset
(4) internet header length field
(5) total length field
(6) header checksum

If the Don't Fragment flag (DF) bit is set, then internet
fragmentation of this datagram is NOT permitted, although it may be
discarded. This can be used to prohibit fragmentation in cases
where the receiving host does not have sufficient resources to
reassemble internet fragments.

One example of use of the Don't Fragment feature is to down line
load a small host. A small host could have a boot strap program
that accepts a datagram stores it in memory and then executes it.

The fragmentation and reassembly procedures are most easily
described by examples. The following procedures are example
implementations.

General notation in the following pseudo programs: "=" means "less
than or equal", "#" means "not equal", "=" means "equal", "<-" means
"is set to". Also, "x to y" includes x and excludes y; for example,
"4 to 7" would include 4, 5, and 6 (but not 7).
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An Example Fragmentation Procedure

The maximum sized datagram that can be transmitted through the
next network is called the maximum transmission unit (MTU).

If the total length is less than or equal the maximum transmission
unit then submit this datagram to the next step in datagram
processing; otherwise cut the datagram into two fragments, the
first fragment being the maximum size, and the second fragment
being the rest of the datagram. The first fragment is submitted
to the next step in datagram processing, while the second fragment
is submitted to this procedure in case it is still too large.

Notation:

FO - Fragment Offset
IHL - Internet Header Length
DF - Don't Fragment flag
MF - More Fragments flag
TL - Total Length
OFO - Old Fragment Offset

OIHL - Old Internet Header Length
OMF - Old More Fragments flag
OTL - Old Total Length
NFB - Number of Fragment Blocks
MTU - Maximum Transmission Unit

Procedure:

IF TL =< MTU THEN Submit this datagram to the next step
in datagram processing ELSE IF DF = 1 THEN discard the

datagram ELSE
To produce the first fragment:
(1) Copy the original internet header;
(2) OIHL <- IHL; OTL <- TL; OFO <- FO; OMF < MF;
(3) NFB <- (MTU-IHL*4)/8;
(4) Attach the first NFB*8 data octets;
(5) Correct the header:

MF <- 1; TL <- (IHL*4)+(NFB*8);
Recompute Checksum;

(6) Submit this fragment to the next step in
datagram processing;

To produce the second fragment:
(7) Selectively copy the internet header (some options

are not copied, see option definitions);
(8) Append the remaining data;
(9) Correct the header:

IHL <- (((OIHL-4)-(length of options not copied))+3)/4;
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TL <- OTL - NFB*8 (OIHL-IHL)*4);
FO <- OFO + NFB; MF <- OMF; Recompute Checksum;

(10) Submit this fragment to the fragmentation test; DONE.

In the above procedure each fragment (except the last) was made
the maximum allowable size. An alternative might produce less
than the maximum size datagrams. For example, one could implement
a fragmentation procedure that repeatly divided large datagrams in
half until the resulting fragments were less than the maximum
transmission unit size.

An Example Reassembly Procedure

For each datagram the buffer identifier is computed as the
concatenation of the source, destination, protocol, and
identification fields. If this is a whole datagram (that is both
the fragment offset and the more fragments fields are zero), then
any reassembly resources associated with this buffer identifier
are released and the datagram is forwarded to the next step in
datagram processing.

If no other fragment with this buffer identifier is on hand then
reassembly resources are allocated. The reassembly resources
consist of a data buffer, a header buffer, a fragment block bit
table, a total data length field, and a timer. The data from the
fragment is placed in the data buffer according to its fragment
offset and length, and bits are set in the fragment block bit
table corresponding to the fragment blocks received.

If this is the first fragment (that is the fragment offset is
zero) this header is placed in the header buffer. If this is the
last fragment ( that is the more fragments field is zero) the
total data length is computed. If this fragment completes the
datagram (tested by checking the bits set in the fragment block
table), then the datagram is sent to the next step in datagram
processing; otherwise the timer is set to the maximum of the
current timer value and the value of the time to live field from
this fragment; and the reassembly routine gives up control.

If the timer runs out, the all reassembly resources for this
buffer identifier are released. The initial setting of the timer
is a lower bound on the reassembly waiting time. This is because
the waiting time will be increased if the Time to Live in the
arriving fragment is greater than the current timer value but will
not be decreased if it is less. The maximum this timer value
could reach is the maximum time to live (approximately 4.25
minutes). The current recommendation for the initial timer
setting is 15 seconds. This may be changed as experience with
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this protocol accumulates. Note that the choice of this parameter
value is related to the buffer capacity available and the data
rate of the transmission medium; that is, data rate times timer
value equals buffer size (e.g., 10Kb/s X 15s 150Kb).

Notation:

FO - Fragment Offset
IHL - Internet Header Length
MF - More Fragments flag
TTL - Time To Live
NFB - Number of Fragment Blocks
TL - Total Length
TDL - Total Data Length
BUFID - Buffer Identifier
RCVBT - Fragment Received Bit Table
TLB - Timer Lower Bound

Procedure:

(1) BUFID <- sourceldestinationIprotocollidentification;

(2) IF FO = 0 AND MF = 0
(3) THEN IF buffer with BUFID is allocated
(4) THEN flush all reassembly for this BUFID;

(5) Submit datagram to next step; DONE.
(6) ELSE IF no buffer with BUFID is allocated
(7) THEN allocate reassembly resources

with BUFID;
TIMER <- TLB; TDL <- 0;

(8) put data from fragment into data buffer with
BUFID from octet FO*8 to

octet (TL-(IHL*4))+FO*8;
(9) set RCVBT bits from FO

to FO+((TL-(IHL*4)+7)/B);
(10) IF MF = 0 THEN TDL <- TL-(IHL*4)+(FO*8)
(11) IF FO = 0 THEN put header in header buffer
(12) IF TDL # 0
(13) AND all RCVBT bits from 0

to (TDL+7)/8 are set
(14) THEN TL <- TDL+(IHL*4)
(15) Submit datagram to next step;
(16) free all reassembly resources

for this BUFID; DONE.
(17) TIMER <- MAX(TIMER,TTL);
(18) give up until next fragment or timer expires;
(19) timer expires: flush all reassembly with this BUFID; DONE.

In the case that two or more fragments contain the same data
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either identically or through a partial overlap, this procedure
will use the more recently arrived copy in the data buffer and
datagram delivered.

Identification

The choice of the Identifier for a datagram is based on the need to
provide a way to uniquely identify the fragments of a particular
datagram. The protocol module assembling fragments judges fragments
to belong to the same datagram if they have the same source,
destination, protocol, and Identifier. Thus, the sender must choose
the Identifier to be unique for this source, destination pair and
protocol for the time the datagram (or any fragment of it) could be
alive in the internet.

It seems then that a sending protocol module needs to keep a table
of Identifiers, one entry for each destination it has communicated
with in the last maximum packet lifetime for the internet.

However, since the Identifier field allows 65,536 different values,
some host may be able to simply use unique identifiers independent
of destination.

It is appropriate for some higher level protocols to choose the
identifier. For example, TCP protocol modules may retransmit an
identical TCP segment, and the probability for correct reception
would be enhanced if the retransmission carried the same identifier
as the original transmission since fragments of either datagram
could be used to construct a correct TCP segment.

Type of Service

The type of service (TOS) is for internet service quality selection.
The type of service is specified along the abstract parameters
precedence, delay, throughput, and reliability. These abstract
parameters are to be mapped into the actual service parameters of

the particular networks the datagram traverses.

Precedence. An independent measure of the importance of this
datagram.

Delay. Prompt delivery is important for datagrams with this
indication.

Throughput. High data rate is important for datagrams with this
indication.
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Reliability. A higher level of effort to ensure delivery is
important for datagrams with this ;dication.

For example, the ARPANET has a priority bit, and a choice between
"standard" messages (type 0) and "uncontrolled" messages (type 3),
(the choice between single packet and multipacket messages can also
be considered a service parameter). The uncontrolled fnessages tend
to be less reliably delivered and suffer less delay. Suppose an
internet datagram is to be sent through the ARPANET. Let the
internet type of service be given as:

Precedence: 5
Delay: 0
Throughput: 1
Reliability: 1

In this example, the mapping of these parameters to those available
for the ARPANET would be to set the ARPANET priority bit on since
the Internet precedence is in the upper half of its range, to select
standard messages since the throughput and reliability requirements
are indicated and delay is not. More details are given on service
mappings in "Service Mappings" [8].

Time to Live

The time to live is set by the sender to the maximum time the
datagram is allowed to be in the internet system. If the datagram
is in the internet system longer than the time to live, then the
datagram must be destroyed.

This field must be decreased at each point that the internet header
is processed to reflect the time spent processing the datagram.
Even if no local information is available on the time actually
spent, the field must be decremented by 1. The time is measured in
units of seconds (i.e. the value 1 means one second). Thus, the
maximum time to live is 255 seconds or 4.25 minutes. Since every
module that processes a datagram must decrease the TTL by at least
one even if it process the datagram in less than a second, the TTL
must be thought of only as an upper bound on the time a datagram may
exist. The intention is to cause undeliverable datagrams to be
discarded, and to bound the maximum datagram lifetime.

Some higher level reliable connection protocols are based on
assumptions that old duplicate datagrams will not arrive after a
certain time elapses. The TTL is a way for such protocols to have
an assurance that their assumption is met.
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Options

The options are optional in each datagram, but required in
implementations. That is, the presence or absence of an option is
the choice of the sender, but each internet module must be able to
parse every option. There can be several options present in the
option field.

The options might not end on a 32-bit boundary. The internet header
must be filled out with octets of zeros. The first of these would
be interpreted as the end-of-options option, and the remainder as
internet header padding.

Every internet module must be able to act on every option. The
Security Option is required if classified, restricted, or
compartmented traffic is to be passed.

Checksum

The internet header checksum is recomputed if the internet header is
changed. For example, a reduction of the time to live, additions or
changes to internet options, or due to fragmentation. This checksum
at the internet level is intended to protect the internet header
fields from transmission errors.

There are some applications where a few data bit errors are
acceptable while retransmission delays are not. If the internet
protocol enforced data correctness such applications could not be
supported.

Errors

Internet protocol errors may be reported via the ICMP messages [3].

3.3. Interfaces

The functional description of user interfaces to the IP is, at best,
fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different IP
implementations may have different user interfaces. However, all IPs
must provide a certain minimum set of services to guarantee that all
IP implementations can support the same protocol hierarchy. This
section specifies the functional interfaces required of all IP
implementations.

Internet protocol interfaces on one side to the local network and on
the other side to either a higher level protocol or an application
program. In the following, the higher level protocol or application
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program (or even a gateway program) will be called the "user" since it
is using the internet module. Since internet protocol is a datagram
protocol, there is minimal memory or state maintained between datagram
transmissions, and each call on the internet protocol module by the
user supplies all information necessary for the IP to perform the
service requested.

An Example Upper Level Interface

The following two example calls satisfy the requirements for the user
to internet protocol module communication ("=>" means returns):

SEND (src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result)

where:

src = source address
dst = destination address
prot = protocol
TOS = type of service
TTL = time to live
BufPTR = buffer pointer
len = length of buffer
Id = Identifier
DF = Don't Fragment

opt = option data
result = response

OK = datagram sent ok
Error = error in arguments or local network error

Note that the precedence is included in the TOS and the
security/compartment is passed as an option.

RECV (BufPTR, prot, => result, src, dst, TOS, len, opt)

where:

BufPTR = buffer pointer
prot = protocol
result = response

OK = datagram received ok
Error = error in arguments

len = length of buffer
src = source address
dst = destination address
TOS = type of service
opt = option data
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When the user sends a datagram, it executes the SEND call supplying
all the arguments. The internet protocol module, on receiving this
call, checks the arguments and prepares and sends the message. If the
arguments are good and the datagram is accepted by the local network.
the call returns successfully. If either the arguments are bad, or
the datagram is not accepted by the local network, the call returns
unsuccessfully. On unsuccessful returns, a reasonable report must be
made as to the cause of the problem, but the details of such reports
are up to individual implementations.

When a datagram arrives at the internet protocol module from the local
network, either there is a pending RECV call from the user addressed
or there is not. In the first case, the pending call is satisfied by
passing the information from the datagram to the user. In the second
case, the user addressed is notified of a pending datagram. If the
user addressed does not exist, an ICMP error message is returned to
the sender, and the data is discarded.

The notification of a user may be via a pseudo interrupt or similar
mechanism, as appropriate in the particular operating system

environment of the implementation.

A user's RECV call may then either be immediately satisfied by a
pending datagram, or the call may be pending until a datagram arrives.

The source address is included in the send call in case the sending
host has several addresses (multiple physical connections or logical
addresses). The internet module must check to see that the source
address is one of the legal address for this host.

An implementation may also allow or require a call to the internet
module to indicate interest in or reserve exclusive use of a class of
datagrams (e.g., all those with a certain value in the protocol
field).

This section functionally characterizes a USER/IP interface. The
notation used is similar to most procedure of function calls in high
level languages, but this usage is not meant to rule out trap type
service calls (e.g., SVCs, UUOs, EMTs), or any other form of
interprocess communication.
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Example 1:

This is an example of the minimal data carrying internet datagram:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 g 0 1 2 3 4 5 6 7 8 g 0 1

JVer = 4 IIHL= 5 IType of Servicel Total Length = 21

I Identification = 111 JFlg=OJ Fragment Offset = 0

I Time = 123 I Protocol = I header checksum

source address

destination address

data J

Example Internet Datagram

Figure 5.

Note that each tick mark represents one bit position.

This is a internet datagram in version 4 of internet protocol; the
internet header consists of five 32 bit words, and the total length of
the datagram is 21 octets. This datagram is a complete datagram (not
a fragment).
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Example 2:

In this example, we show first a moderate size internet datagram (452
data octets), then two internet fragments that might result from the
fragmentation of this datagram if the maximum sized transmission

allowed were 280 octets.

0 1 2 3
01234567890123456789012345678901

IVer= 4 IIHL= 5 IType of Servicel Total Length = 472

I Identification = 111 jFlg=0j Fragment Offset = 0

Time = 123 I Protocol = 6 I header checksum

source address

destination address

data

data

data

data

Example Internet Datagram

Figure 6.
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Now the first fragment that results from splitting the datagram after
256 data octets.

0 1 2 3

01234567890123456789012345678901

Ver= 4 IIHL= 5 IType of Servicel Total Length = 276

Identification = 111 lFlg=1l Fragment Offset 0

Time = 119 I Protocol = 6 I Header Checksum

source address

destination address

data

data

data

data

Example Internet Fragment

Figure 7.
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And the second fragment.

0 1 2 3
01234567890 123456789012345678901

IVer= 4 IIHL= 5 IType of Servicel Total Length = 216

Identification = 111 IFlg=OI Fragment Offset 32

Time = 119 I Protocol = 6 I Header Checksum

source address

destination address

data

data

data
data

I data I

Example Internet Fragment

Figure 8.
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Example 3:

Here, we show an example of a datagram containing options:

0 1 2 3

01234587890123456789012345678901

jVer= 4 IIHL= 8 IType of Service i  Total Length = 576

I Identification = 111 IFlg=OI Fragment Offset 0

Time = 123 1 Protocol = 6 Header Checksum

source address

destination address

Opt. Code = x j Opt. Len.= 3 1 option value I Opt. Code = x

Opt. Len. = 4 option value I Opt. Code 1

Opt. Code = yI Opt. Len. = 3 j option value I Opt. Code = 0

data

data

I data

Example Internet Datagram

Figure 9.
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APPENDIX B: Data Transmission Order

The order of transmission of the header and data described in this
document is resolved to the octet level. Whenever a diagram shows a
group of octets, the order of transmission of those octets is the normal

order in which they are read in English. For example, in the following
diagram the octets are transmitted in the order they are numbered.

0 1 2 3
01234567890123456789012345678901

1 I 2 3 I 4 I
+ - +- + l- +- +l- + - +- + - + - +- + - + - +- +- +-+- -+- + - +- + - + -- +- + - + - +- + -- I-- + - +- +- +- +- +

I 5 I 6 I 7 8 I

I 9 I 10 j 11 I 12 I

Transmission Order of Bytes

Figure 10.

Whenever an octet represents a numeric quantity the left most bit in the

diagram is the high order or most significant bit. That is, the bit
labeled 0 is the most significant bit. For example, the following

diagram represents the value 170 (decimal).

01234567

I1 0 1 0 1 0 1 01

Significance of Bits

Figure 11.

Similarly, whenever a multi-octet field represents a numeric quantity
the left most bit of the whole field is the most significant bit. When
a multi-octet quantity is transmitted the most significant octet is
transmitted first.
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GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP". The specification of interface between a
host and the ARPANET.

ARPANET leader
The control information on an ARPANET message at the host-IMP
interface.

ARPANET message
The unit of transmission between a host and an IMP in the
ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets (1008 bits).

Destination
The destination address, an internet header field.

DF
The Don't Fragment bit carried in the flags field.

Flags
An internet header field carrying various control flags.

Fragment Offset
This internet header field indicates where in the internet
datagra:, a fragment belongs.

GGP
Gateway to Gateway Protocol, the protocol used primarily
between gateways to control routing and other gateway
functions.

header
Control information at the beginning of a message, segment,
datagram, packet or block of data.

ICMP
Internet Control Message Protocol, implemented in the internet
module, the ICMP is used from gateways to hosts and between
hosts to report errors and make routing suggestions.
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Identification

An internet header field carrying the identifying value
assigned by the sender to aid in assembling the fragments of a
datagram.

IHL
The internet header field Internet Header Length is the length
of the internet header measured in 32 bit words.

IMP
The Interface Message Processor, the packet switch of the
ARPANET.

Internet Address
A four octet (32 bit) source or destination address consisting
of a Network field and a Local Address field.

internet datagram
The unit of data exchanged between a pair of internet modules
(includes the internet header).

internet fragment
A portion of the data of an internet datagram with an internet
header.

Local Address
The address of a host within a network. The actual mapping of
an internet local address on to the host addresses in a
network is quite general, allowing for many to one mappings.

MF
The More-Fragments Flag carried in the internet header flags
field.

module
An implementation, usually in software, of a protocol or other
procedure.

more-fragments flag
A flag indicating whether or not this internet datagram
contains the end of an internet datagram, carried in the
internet header Flags field.

NFB
The Number of Fragment Blocks in a the data portion of an
internet fragment. That is, the length of a portion of data
measured in 8 octet units.

[Page 42]

- _ & - . J .



September 1981
Internet Protocol

Glossary

octet
An eight bit byte.

Options
The internet header Options field may contain several options,
and each option may be several octets in length.

Padding
The internet header Padding field is used to ensure that the
data begins on 32 bit word boundary. The padding is zero.

Protocol
In this document, the next higher level protocol identifier,
an internet header field.

Rest
The local address portion of an Internet Address.

Source
The source address, an internet header field.

TCP
Transmission Control Protocol: A host-to-host protocol for
reliable communication in internet environments.

TCP Segment
The unit of data exchanged between TCP modules (including the
TCP header).

TFTP
Trivial File Transfer Protocol: A simple file transfer
protocol built on UDP.

Time to Live
An internet header field which indicates the upper bound on
how long this internet datagram may exist.

TOS
Type of Service

Total LengthrThe internet header field Total Length is the length of the

datagram in octets including internet header and data.

TTL
Time to Live
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Type of Service
An internet header field which indicates the type (or quality)

of service for this internet datagram.

UDP
User Datagram Protocol: A user level protocol for transaction
oriented applications.

User
The user of the internet protocol. This may be a higher level
protocol module, an application program, or a gateway program.

Version
The Version field indicates the format of the interaet header.
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Introduction

The Internet Protocol (IP) [1] is used for host-to-host datagram
service in a system of interconnected networks called the
Catenet [2]. The network connecting devices are called Gateways.
These gateways communicate between themselves for control purposes
via a Gateway to Gateway Protocol (GGP) [3,4]. Occasionally a
gateway or destination host will communicate with a source host, for
example, to report an error in datagram processing. For such
purposes this protocol, the Internet Control Message Protocol (ICMP),
is used. ICMP, uses the basic support of IP as if it were a higher
level protocol, however, ICMP is actually an integral part of IP, and
must be implemented by every IP module.

ICMP messages are sent in several situations: for example, when a
datagram cannot reach its destination, when the gateway does not have
the buffering capacity to forward a datagram, and when the gateway
can direct the host to send traffic on a shorter route.

The Internet Protocol is not designed to be absolutely reliable. The
purpose of these control messages is to provide feedback about
problems in the communication environment, not to make IP reliable.
There are still no guarantees that a datagram will be delivered or a
control message will be returned. Some datagrams may still be
undelivered without any report of their loss. The higher level
protocols that use IP must implement their own reliability procedures
if reliable communication is required.

The ICMP messages typically report errors in the processing of
datagrams. To avoid the infinite regress of messages about messages
etc., no ICMP messages are sent about ICMP messages. Also ICMP
messages are only sent about errors in handling fragment zero of
fragemented datagrams. (Fragment zero has the fragment offeset equal
zero) .
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Message Formats

ICMP messages are sent using the basic IP header. The first octet of
the data portion of the datagram is a ICMP type field; the value of
this field determines the format of the remaining data. Any field
labeled "unused" is reserved for later extensions and must be zero
when sent, but receivers should not use these fields (except to
include them in the checksum). Unless otherwise noted under the
individual format descriptions, the values of the internet header
fields are as follows:

Version

4

IHL

Internet header length in 32-bit words.

Type of Service

0

Total Length

Length of internet header and data in octets.

Identification, Flags, Fragment Offset

Used in fragmentation, see [1].

Time to Live

Time to live in seconds; as this field is decremented at each
machine in which the datagram is processed, the value in this
field should be at least as great as the number of gateways which
this datagram will traverse.

Protocol

ICMP = I

Header Checksum

The 16 bit one's complement of the one's complement sum of all 16
bit words in the header. For computing the checksum, the checksum
field should be zero. This checksum may be replaced in the
future.
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Source Address

The address of the gateway or host that composes the 1CMP message.

Unless otherwise noted, this can be any of a gateway's addresses.

Destination Address

The address of the gateway or host to which the message should be

sent.
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Destination Unreachable Message

0 i 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I Type I Code I Checksum

unused

I Internet Header + 64 bits of Original Data Datagram

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

3

Code

0 = net unreachable;

1 = host unreachable;

2 = protocol unreachable;

3 = port unreachable;

4 = fragmentation needed and DF set;

5 = source route failed.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
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datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

If, according to the information in the gateway's routing tables,
the network specified in the internet destination field of a
datagram is unreachable, e.g., the distance to the network is
infinity, the gateway may send a destination unreachable message
to the internet source host of the datagram. In addition, in some
networks, the gateway may be able to determine if the internet
destination host is unreachable. Gateways in these networks may
send destination unreachable messages to the source host when the
destination host is unreachable.

If, in the destination host, the IP module cannot deliver the
datagram because the indicated protocol module or process port is
not active, the destination host may send a destination
unreachable message to the source host.

Another case is when a datagram must be fragmented to be forwarded
by a gateway yet the Don't Fragment flag is on. In this case the
gateway must discard the datagram and may return a destination
unreachable message.

Codes 0. 1, 4, and 5 may be received from a gateway. Codes 2 and
3 may be received from a host.

[Page 5]
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Time Exceeded Message

0 1 2 3
0 12345 6 789 0 123456789 0 123456 789 0 1

J Type I Code I Checksum J
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ .+-+-+-+-+-+-+-+-+-+-+-+-+-+

I unused

I Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-s -*+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

11

Code

0 = time to live exceeded in transit;

1 = fragment reassembly time exceeded.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol

uses port numbers, they are assumed to be in the first 64 data
bits of the original datagr .in's data.

Description

If the gateway processing a datagram finds the time to live field
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is zero it must discard the datagram. The gateway may also notify
the source host via the time exceeded message.

If a host reassembling a fragmented datagram cannot complete the
reassembly due to missing fragments within its time limit it
discards the datagram, and it may send a time exceeded message.

If fragment zero is not available then no time exceeded need be

sent at all.

Code 0 may be received from a gateway. Code 1 may be received
from a host.

I
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Parameter Problem Message

0 1 2 3
01234567890123456789012345678901

I Type I Code I Checksum I

Pointer unused

I Internet Header + 64 bits of Original Data Datagram j

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

12

Code

0 = pointer indicates the error.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Pointer

If code = 0, identifies the octet where an error was detected.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.
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Description

If the gateway or host processing a datagram finds a problem with
the header parameters such that it cannot complete processing the
datagram it must discard the datagram. One potential source of
such a problem is with incorrect arguments in an option. The
gateway or host may also notify the source host via the parameter
problem message. This message is only sent if the error caused
the datagram to be discarded.

The pointer identifies the octet of the original datagram's header
where the error was detected (it may be in the middle of an
option). For example, 1 indicates something is wrong with the
Type of Service, and (if there are options present) 20 indicates
something is wrong with the type code of the first option.

Code 0 may be received from a gateway or a host.
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Source Quench Message

0123456789012345678901234567890101 2 3

Type J Code I Checksum

unused

I Internet Header + 64 bits of Original Data Datagram

IP Fields:

Destination Address

The source network and address of the original datagram's data.

ICMP Fields:

Type

4

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's

complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to rqtch the
message to the appropriate process. If a higher I protocol
uses port numbers, they are assumed to be in *, 64 data
bits of the original datagram's data.

Description

A gateway may discard internet datagrams if it does not have the
buffer space needed to queue the datagrams for output to the next
network on the route to the destination network. If a gateway
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discards a datagram, it may send a source quench message to the
internet source host of the datagram. A destination host may also

send a source quench message if datagrams arrive too fast to be
processed. The source quench message is a request to the host to
cut back the rate at which it is sending traffic to the internet
destination. The gateway may send a source quench message for
every message that it discards. On receipt of a source quench
message, the source host should cut back the rate at which it is
sending traffic to the specified destination until it no longer
receives source quench messages from the gateway. The source host

can then gradually increase the rate at which it sends traffic to
the destination until it again receives source quench messages.

The gateway or host may send the source quench message when it
approaches its capacity limit rather than waiting until the
capacity is exceeded. This means that the data datagram which
triggered the source quench message may be delivered.

Code 0 may be received from a gateway or a host.

[Page 11]
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0 1 2 3
01234567890123456789012345678901

I Type J Code Checksumu

Gateway Internet Address

J Internet Header + 64 bits of Original Data Datagram

IP Fields:

Destination Address

The source network and address of the original datagram's data.

ICMP Fields:

Type

5

Code

0 = Redirect datagrams for the Network.

1 = Redirect datagrams for the Host.

2 = Redirect datagrams for the Type of Service and Network.

3 = Redirect datagrams for the Type of Service and Host.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Gateway Internet Address

Address of the gateway to which traffic for the network specified
in the internet destination network field of the original
datagram's data should be sent.
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ret 'ader + 64 bits of Data Datagram

i'e internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the

message to the appropriate process, If a higher level protocol

uses port numbers, Lhey are assumed to be in the first 64 data

bits of the original datagram's data.

Description

The gateway sends a redirect message to a host in the following

situation. A gateway, G1, receives an internet datagram from a
host on a network to which the gateway is attached. The gateway,

Gi. checks its routing table and obtains the address of the next
gateway, G2, on the route to the datagram's internet destination
network, X. If G2 and the host identified by the internet source

address of the datanram are on the same network, a redirect
message is sent to the host. The redirect message advises the

host Lo send its traffic for network X directly to gateway G2 as

this is a shorter path to the destination. The gateway forwards

the original datagram's data to its internet destination.

For datagrams with the IP source route options and the gateway

address in the destination address field, a redirect message is
not sent even if there is a better route to the ultimate

destination than the next address in the source route.

i Codes 0, 1, 2, and 3 may be received from a gateway.
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Echo or Echo Reply Message

0 1 2 3
01234567890123456789012345678901

Type I Code I Checksum
+- +-+-+- +- +-+- +-+-+-+-+- +- +-+-+- +-+-+-+- --- +-+-+- +- +-+-+- +-+-+- +

Identifier I Sequence Number

I Data ...

IP Fields:

Addresses

The address of the source in an echo message will be the
destination of the echo reply message. To form an echo reply

message, the source and destination addresses are simply reversed,
the type code changed to 0, and the checksum recomputed.

IP Fields:

Type

for echo message;

0 for echo reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
If the total length is odd, the received data is padded with one

octet of zeros for computing the checksum. This checksum may be
replaced in the future.

Identifier

If code = 0, an identifier to aid in matching echos and replies,

may be zero.

Sequence Number
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If code 0, a sequence number to aid in matching echos and

replies, may be zero.

Description

The data received in the echo message must be returned in the echo

reply message.

The identifier and sequence number may be used by the echo sender
to aid in matching the replies with the echo requests. For
example, the identifier might be used like a port in TCP or UDP to
identify a session, and the sequence number might be incremented

on each echo request sent. The echoer returns these same values
in the echo reply.

Code 0 may be received from a gateway or a host.
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Timestamp or Timestamp Reply Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 g 0 1

I Type I Code I Checksum

I Identifier I Sequence Number

I Originate Timestamp

I Receive Timestamp

I Transmit Timestamp

IP Fields:

Addresses

The address of the source in a timestamp message will be the
destination of the timestamp reply message. To form a timestamp
reply message, the source and destination addresses are simply
reversed, the type code changed to 14, and the checksum
recomputed.

IP Fields:

Type

13 for timestamp message;

14 for timestamp reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Identifier
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If code = 0. an identifier to aid in matching timestamp and

replies, may be zero.

Sequence Number

If code = 0, a sequence number to aid in matching timestamp and
replies, may be zero.

Description

The data received (a timestamp) in the message is returned in the
reply together with an additional timestamp. The timestamp is 32
bits of milliseconds since midnight UT. One use of these
timestamps is described by Mills [5].

The Originate Timestamp is the time the sender last touched the
message before sending it, the Receive Timestamp is the time the
echoer first touched it on receipt, and the Transmit Timestamp is
the time the echoer last touched the message on sending it.

If the time is not available in miliseconds or cannot be provided
with respect to midnight UT then any time can be inserted in a
timestamp provided thn high order bit of the timestamp is also set
to indicate this non-standard value.

The identifier and sequence number may be used by the echo sender
to aid in matching the replies with the requests. For example,
the identifier might be used like a port in TCP or UDP to identify
a session, and the sequence number might be incremented on each
request sent. The destination returns these same values in the
reply.

Code 0 may be received from a gateway or a host.
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Information Request or Information Reply Message

0 1 2 3

01234567890123456789012345678901

Type I Code I Checksum
+l-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+-+-+_+_+_+_+_+I

I Identifier I Sequence Number

IP Fields:

Addresses

The address of the source in a information request message will be
the destination of the information reply message. To form a
information reply message, the source and destination addresses
are simply reversed, the type code changed to 16, and the checksum
recomputed.

IP Fields:

Type

15 for information request message;

16 for information reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Identifier

If code = 0, an identifier '.o aid in matching request and replies,
may be zero.

Sequence Number

If code = 0, a sequence number to aid in matching request and
replies, may be zero.
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Description

This message may be sent with the source network in the IP header
source and destination address fields zero (which means "this"
network). The replying IP module should send the reply with the
addresses fully specified. This message is a way for a host to
find out the number of the network it is on.

The identifier and sequence number may be used by the echo sender
to aid in matching the replies with the requests. For example,
the identifier might be used like a port in TCP or UDP to identify
a session, and the sequence number might be incremented on each
request sent. The destination returns these same values in the
reply.

Code 0 may be received from a gateway or a host.
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Summary of Message Types

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply
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PREFACE

This document describes the DoD Standard Transmission Control Protocol
(TCP). There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition clarifies
several details and removes the end-of-letter buffer-size adjustments,
and redescribes the letter mechanism as a push function.

Jon Postel

Editor
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TRANSMISSION CONTROL PROTOCOL
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1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and in interconnected systems of such networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services.

1.1. Motivation

Computer communication systems are playing an increasingly important
role in military, government, and civilian environments. This
document focuses its attention primarily on military computer
communication requirements, especially robustness in the presence of
communication unreliability and availability in the presence of
congestion, but many of these problems are found in the civilian and
government sector as well.

As strategic and tactical computer communication networks are
developed and deployed, it is essential to provide means of
interconnecting them and to provide standard interprocess
communication protocols which can support a broad range of
applications. In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engineering has
declared the Transmission Control Protocol (TCP) described herein to
be a basis for DoD-wide inter-process communication protocol
standardization.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a layered hierarchy of protocols which support multi-network
applications. The TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to
distinct but interconnected computer communication networks. Very few
assumptions are made as to the reliability of the communication
protocols below the TCP layer. TCP assumes it can obtain a simple,
potentially unreliable datagram service from the lower level
protocols. In principle, the TCP should be able to operate above a
wide spectrum of communication systems ranging from hard-wired
connections to packet-switched or circuit-switched networks.
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TCP is based on concepts first described by Cerf and Kahn in [1]. The
TCP fits into a layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet
datagram "envelopes". The internet datagram provides a means for
addressing source and destination TCPs in different networks. The
internet protocol also deals with any fragmentation or reassembly of
the TCP segments required to achieve transport and delivery through
multiple networks and interconnecting gateways. The internet protocol
also carries information on the precedence, security classification
and compartmentation of the TCP segments, so this information can be
communicated end-to-end across multiple networks.

Protocol Layering

+ -----------------------

I higher-level I
+ ----------------------- +

I TCP I
+ -----------------------

I internet protocol I
----------------------------

1communication networki
----------------------------

Figure 1

Much of this document is written in the context of TCP implementations
which are co-resident with higher level protocols in the host
computer. Some computer systems will be connected to networks via
front-end computers which house the TCP and internet protocol layers,
as well as network specific software. The TCP specification describes
an interface to the higher level protocols which appears to be
implementable even for the front-end case, as long as a suitable
host-to-front end protocol is implemented.

1.2. Scope

The TCP is intended to provide a reliable process-to-process
communication service in a multinetwork environment. The TCP is
intended to be a host-to-host protocol in common use in multiple

, 'networks.

1.3. About this Document

This document represents a specification of the behavior required of
any TCP implementation, both in its interactions with higher level
protocols and in its interactions with other TCPs. The rest of this

[Page 2]
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section offers a very brief view of the protocol interfaces and
operation. Section 2 summarizes the philosophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segments,
user calls, errors, etc.) and the details of the formats of TCP
segments.

1.4. Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a lower level protocol such as Internet Protocol.

The interface between an application process and the TCP is
illustrated in reasonable detail. This interface consists of a set of
calls much like the calls an operating system provides to an
application process for manipulating files. For example, there are
calls to open and close connections and to send and receive data on
established connections. It is also expected that the TCP can
asynchronously communicate with application programs. Although
considerable freedom is permitted to TCP implementors to design
interfaces which are appropriate to a particular operating system
environment, a minimum functionality is required at the TCP/user
interface for any valid implementation.

The interface between TCP and lower level protocol is essentially
unspecified except that it is assumed there is a mechanism whereby the
two levels can asynchronously pass information to each other.
Typically, one expects the lower level protocol to specify this
interface. TCP is designed to work in a very general environment of
interconnected networks. The lower level protocol which is assumed
throughout this document is the Internet Protocol [2].

1.5. Operation

As noted above, the primary purpose of the TCP is to provide reliable,
securable logical circuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
communication system requires facilities in the following areas:

Basic Data Transfer
Reliability
Flow Control
Multiplexing
Connections
Precedence and Security

The basic operation of the TCP in each of these areas is described in

the following paragraphs.
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Basic Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packaging some number of octets into
segments for transmission through the internet system. In general.
the TCPs decide when to block and forward data at their own
convenience.

Sometimes users need to be sure that all the data they have
submitted to the TCP has been transmitted. For this purpose a push
function is defined. To assure that data submitted to a TCP is
actually transmitted the sending user indicates that it should be
pushed through to the receiving user. A push causes the TCPs to
promptly forward and deliver data up to that point to the receiver.
The exact push point might not be visible to the receiving user and
the push function does not supply a record boundary marker.

Reliability:

The TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the internet communication system. This
is achieved by assigning a sequence number to each octet
transmitted, and requiring a positive acknowledgment (ACK) from the
receiving TCP. If the ACK is not received within a timeout
interval, the data is retransmitted. At the receiver, the sequence
numbers are used to correctly order segments that may be received
out of order and to eliminate duplicates. Damage is handled by
adding a checksum to each segment transmitted, checking it at the
receiver, and discarding damaged segments.

As long as the TCPs continue to function properly and the internet
system does not become completely partitioned, no transmission
errors will affect the correct delivery of data. TCP recovers from
internet communication system errors,

Flow Control:

TCP provides a means for the receiver to govern the amount of data
sent by the sender. This is achieved by returning a "window" with
every ACK indicating a range of acceptable sequence numbers beyond
the last segment successfully received. The window indicates an
allowed number of octets that the sender may transmit before
receiving further permission.

[Page 4]
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Multiplexing:

To allow for many processes within a single Host to use TCP
communication facilities simultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network
and host addresses from the internet communication layer, this forms
a socket. A pair of sockets uniquely identifies each connection.
That is, a socket may be simultaneously used in multiple
connections.

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger" or timesharing service) to fixed sockets which are
made known to the public. These services can then be accessed
through the known addresses. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms.

Connections:

The reliability and flow control mechanisms described above require
that TCPs initialize and maintain certain status information for
each data stream. The combination of this information, including
sockets, sequence numbers, and window sizes, is called a connection.
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes wish to communicate, their TCP's must first
establish a connection (initialize the status information on each
side). When their communication is complete, the connection is
terminated or closed to free the resources for other uses.

Since connections must be established between unreliable hosts and
over the unreliable internet communication system, a handshake
mechanism with clock-based sequence numbers is used to avoid
erroneous initialization of connections.

Precedence and Security:

The users of TCP may indicate the sectirity and precedence of their
communication. Provision is made for default values to be used when
these features are not needed.
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2.1. Elements of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assumed here
that the networks may be either local networks (e.g., the ETHERNET) or
large networks (e.g., the ARPANET), but in any case are based on
packet switching technology. The active agents that produce and
consume messages are processes. Various levels of protocols in the
networks, the gateways, and the hosts support an interprocess
communication system that provides two-way data flow on logical
connections between process ports.

The term packet is used generically here to mean the data of one
transaction between a host and its network. The format of data blocks
exchanged within the a network will generally not be of concern to us.

Hosts are computers attached to a network, and from the communication
network's point of view, are the sources and destinations of packets.
Processes are viewed as the active elements in host computers (in
accordance with the fairly common definition of a process as a program
in execution). Even terminals and files or other I/O devices are
viewed as communicating with each other through the use of processes.
Thus, all communication is viewed as inter-process communication.

Since a process may need to distinguish among several communication
streams between itself and another process (or processes), we imagine
that each process may have a number of ports through which it
communicates with the ports of other processes.

2.2. Model of Operation

. Processes transmit data by calling on the TCP and passing buffers of
data as arguments. The TCP packages the data from these buffers into
segments and calls on the internet module to transmit each segment to
the destination TCP. The receiving TCP places the data from a segmernt
into the receiving user's buffer and notifies the receiving user. The
TCPs include control information in the segments which they use to
ensure reliable ordered data transmission.

The model of internet communication is that there is an internet
protocol module associated with each TCP which provides an interface
to tne local network. This internet module packages TCP segments
inside internet datagrams and routes these datagrams to a destination
internet module or intermediate gateway. To transmit the datagram
through the local network, it is embedded in a local network packet.

The packet switches may perform further packaging, fragmentation, or
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other operations to achieve the delivery of the local packet to the

destination internet module.

At a gateway between networks, the internet datagram is "unwrapped"

from its local packet and examined to determine through which network
the internet datagram should travel next. The internet datagram is
then "wrapped" in a local packet suitable to the next network and
routed to the next gateway, or to the final destination.

A gateway is permitted to break up a. internet datagram into smaller
internet datagram fragments if this is necessary for transmission

through the next network. To do this, the gateway produces a set of
internet datagrams; each carrying a fragment. Fragments may be

further broken into smaller fragments at subsequent gateways. The
internet datagram fragment format is designed so that the destination
internet module can reassemble fragments into internet datagrams.

A destination internet module unwraps the segment from the datagram
(after reassembling the datagram, if necessary) and passes it to the
destination TCP.

This simple model of the operation glosses over many details. One
important feature is the type of service. This provides information
to the gateway (or internet module) to guide it in selecting the
service parameters to be used in traversing the next network.
Included in the type of service information is the precedence of the
datagram. Datagrams may also carry security information to permit
host and gateways that operate in multilevel secure environments to
properly segregate datagrams for security considerations.

2.3. The Host Environment

The TCP is assumed to be a module in an operating system. The users

access the TCP much like they would access the file system. The TCP
may call on other operating system functions, for example, to manage

data structures. The actual interface to the network is assumed to be

controlled by a device driver module. The TCP does not call on the
iietwork device driver directly, but rather calls on the internet
datagram protocol module which may in turn call on the device driver.

The mechanisms of TCP do not preclude implementation of the TCP in a
front-end processor. However, in such an implementation, a
host-to-front-end protocol must provide the functionality to support

the type of TCP-user interface described in this document.
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2.4. Interfaces

The TCP/user interfa:e provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
STATUS about a connection. These calls are like other calls from user
programs on the operating system, for example, the calls to open, read
from. and close a file.

The TCP/internet interface provides calls to send and receive
datagrams addressed to TCP modules in hosts anywhere in the internet
system. These calls have parameters for passing the address, type of
service, precedence, security, and other control information.

2.5. Relation to Other Protocols

The following diagram illustrates the place of the TCP in the protocol
hierarchy:

.---------- -- +------ +- -- -

ITelnetl I FTP I IVoicel ... I I Application Level

------- - ----- ---I I I I
I P jc RTP I . .. I I Host Level

1 I I
-----------------------------------------

I Internet Protocol & ICMP I Gateway Level
----------------------------------------- +

I
------------------------------------

Local Network Protocol I Network Level
------------------------------------

Protocol Relationships

Figure 2.

It is expected that the TCP will be able to support higher level
protocols efficiently. It should be easy to interface higher level
protocols like the ARPANET Telnet or AUTODIN II THP to the TCP.

2.6. Reliable Communication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination.
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Iransmissilon is made reliable via the use of sequence numbers and
acknowledgments. Conceptually, each octet of data is assigned a
sequenLe iumber. The sequence number of the first octet of data in a
segment is transmitted with that segment and is called the segment
sequence number. Segments also carry an acknowledgment number which
is the soquence number of the next expected data octet of
tr, insmiss ,ins in the reverse direction. When the TCP transmits a
segment c.ntaining data, it puts a copy on a retransmission queue and
starts a t mer; when the acknowledgment for that data is received, the
segment 's deleted from the queue. If the acknowledgment is not
received before the timer runs out, the segment is retransmitted.

An acknowledgment by TCP does not guarantee that the data has been
delivered to the end user, but only that the receiving TCP has taken
the responsibility to do so.

To govern the flow of data between TCPs, a flow control mechanism is
employed. The receiving TCP reports a "window" to the sending TCP.
This window specifies the number of octets, starting with the
acknowledgment number, that the receiving TCP is currently prepared to
receive.

2.7. Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle, the TCP
provides a port identifier. Since port identifiers are selected
independently by each TCP they might not be unique. To provide for
unique addresses within each TCP, we concatenate an internet address
identifying the TCP with a port identifier to create a socket which
will be unique throughout all networks connected together.

A connection is fully specified by the pair of sockets at the ends. A
local socket may participate in many connections to different foreign
sockets. A connection can be used to carry data in both directions,
that is, it is "full duplex".

TCPs are free to associate ports with processes however they choose.
However, several basic concepts are necessary in any implementation.
There must be well-known sockets which the TCP associates only with
the "appropriate" processes by some means. We envision that processes
may "own" ports, and that processes can initiate connections only on
the ports they own. (Means for implementing ownership is a local
issue, but we envision a Request Port user command, or a method of
uniquely allocating a group of ports to a given process, e.g., by
associating the high order bits of a port name with a given process.)

A connection is specified in the OPEN call by the local port and
foreign socket arguments. In return, the TCP supplies a (short) local
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connection name by which the user refers to the connection in

subsequent calls. There are several things that must be remembered
about a connection. To store this information we imagine that there
is a data structure called a Transmission Control Block (TCB). One

implementation strategy would have the local connection name be a
pointer to the TCB for this connection. The OPEN call also specifies
whether the connection establishment is to be actively pursued, or to

be passively waited for.

A passive OPEN request means that the process wants to accept incoming
connection requests rather than attempting to initiate a connection.

Often the process requesting a passive OPEN wil' accept a connection
request from any caller. In this case a foreigi socket of all zeros
is used to denote an unspecified socket. Unspecified foreign sockets

are allowed only on passive OPENs.

A service process that wished to provide services for unknown other
processes would issue a passive OPEN request with an unspecified

foreign socket. Then a connection could be made with any process that
requested a connection to this local socket. It would help if this
local socket were known to be associated with this service.

Well-known sockets are a convenient mechanism for a priori associating

a socket address with a standard service. For instance, the
"Telnet-Server" process is permanently assigned to a particular
socket, and other sockets are reserved for File Transfer, Remote Job
Entry, Text Generator, Echoer, and Sink processes (the last three

being for test purposes). A socket address might be reserved for
access to a "Look-Up" service which would return the specific socket
at which a newly created service would be provided. The concept of a
well-known socket is part of the TCP specification, but the assignment
of sockets to services is outside this specification. (See [4].)

Processes can issue passive OPENs and wait for matching active OPENs

from other processes and be informed by the TCP when connections have

been established. Two processes which issue active OPENs to each
other at the same time will be correctly connected. This flexibility
is critical for the support of distributed computing in which
components act asynchronously with respect to each other.

There are two principal cases for matching the sockets in the local
passive OPENs and an foreign active OPENs. In the first case, the

local passive OPENs has fully specified the foreign socket. In this
case, the match must be exact. In the second case, the local passive
OPENs has left the foreign socket unspecified. In this case, any
foreign socket is acceptable as long as the local sockets match.
Other possibilities include partially restricted matches.

[Page 11]
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If there are several pending passive OPENs (recorded in TCBs) with the
same local socket, an foreign active OPEN will be matched to a TCB
with the specific foreign socket in the foreign active OPEN, if such a
TCB exists, before selecting a TCB with an unspecified foreign socket.

The procedures to establish connections utilize the synchronize (SYN)
control flag and involves an exchange of three messages. This
exchange has been termed a three-way hand shake [3].

A connection is initiated by the rendezvous of an arriving segment
containing a SYN and a waiting TCB entry each created by a user OPEN
command. The matching of local and foreign sockets determines when a
connection has been initiated. The connection becomes "established"
when sequence numbers have been synchronized in both directions.

The clearing of a connection also involves the exchange of segments,
in this case carrying the FIN control flag.

2.8. Data Communication

The data that flows on a connection may be thought of as a stream of
octets. The sending user indicates in each SEND call whether the data
in that call (and any preceeding calls) should be immediately pushed
through to the receiving user by the setting of the PUSH flag.

A sending TCP is allowed to collect data from the sending user and to
send that data in segments at its own convenience, until the push
function is signaled, then it must send all unsent data. When a
receiving TCP sees the PUSH flag, it must not wait for more data from
the sending TCP before passing the data to the receiving process.

There is no necessary relationship between push functions and segment
boundaries. The data in any particular segment may be the result of a
single SEND call, in whole or part, or of multiple SEND calls.

The purpose of push function and the PUSH flag is to push data through
from the sending user to the receiving user. It does not provide a
record service.

There is a coupling between the push function and the use of buffers
of data that cross the TCP/user interface. Each time a PUSH flag is
associated with data placed into the receiving user's buffer, the
buffer is returned to the user for processing even if the buffer is
not filled. If data arrives that fills the user's buffer before a
PUSH is seen, the data is passed to the user in buffer size units.

TCP also provides a means to communicate to the receiver of data that
at some point further along in the data stream than the receiver is
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currently reading there is urgent data. TCP does not attempt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process will
take action to process the urgent data quickly.

2.9. Precedence and Security

The TCP makes use of the internet protocol type of service field and
security option to provide precedence and security on a per connection
basis to TCP users. Not all TCP modules will necessarily function in
a multilevel secure environment; some may be limited to unclassified
use only, and others may operate at only one security level and
compartment. Consequently, some TCP implementations and services to
users may be limited to a subset of the multilevel secure case.

TCP modules which operate in a multilevel secure environment must
properly mark outgoing segments with the security, compartment, and
precedence. Such TCP modules must also provide to their users or
higher level protocols such as Telnet or THP an interface to allow
them to specify the desired security level, compartment, and
precedence of connections.

2.10. Robustness Principle

TCP implementations will follow a general principle of robustness: be
conservative in what you do, be liberal in what you accept from
others.
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3. FUNCTIONAL SPECIFICATION

3 1. Header Format

TCP segments are sent as internet datagrams. The Internet Protocol
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host level protocols other than
TCP.

TCP Header Format

0 i 2 3
0123 4 567 8 9 0 1 23 4 56789 01234 5 6789 0 1

I Source Port I Destination Port

Sequence Number

Acknowledgment Number

I Data I IUIAIPIRISIFI I
j Offsetj Reserved IRICISISIYIII Window
I I IGIKIHITININI I

Checksum I Urgent Pointer I

Options I Padding I

data

TCP Header Format

Note that one tick mark represents one bit position.

Figure 3.

Source Port: 16 bits

The source port number.

Destination Port: 16 bits

The destination port number.

[Page 15]

. --. -A- Lad-d ... A-



September 1981
Transmission Control Protocol
Functional Specification

Sequence Number: 32 bits

The sequence number of the first data octet in this segment (except
when SYN is present). If SYN is present the sequence number is the
initial sequence number (ISN) and the first data octet is ISN+1.

Acknowledgment Number: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence number the sender of the segment is expecting to
receive. Once a connection is established this is always sent.

Data Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
integral number of 32 bits long.

Reserved: 6 bits

Reserved for future use. Must be zero.

Control Bits: 6 bits (from left to right):

URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

Window: 16 bits

The number of data octets beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing to
accept.

Checksum: 16 bits

The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header and text. If a
segment contains an odd number of header and text octets to be
checksummed, the last octet is padded on the right with zeros to
form a 16 bit word for checksum purposes. The pad is not
transmitted as part of the segment. While computing the checksum,
the checksum field itself is replaced with zeros.

The checksum also covers a 96 bit pseudo header conceptually
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prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP length.
This gives the TCP protection against misrouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/Network interface in the arguments or results of
calls by the TCP on the IP.

++------------------------------------

I Source Address I
+------------------------------------

I Destination Address I
+------------------------------------

zero I PTCL TCP Length I
+-----------+-------------------------

The TCP Length is the TCP header length plus the data length in
octets (this is not an explicitly transmitted quantity, but is
computed), and it does not count the 12 octets of the pseudo
header.

Urgent Pointer: 16 bits

This field communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. The
urgent pointer points to the sequence number of the octet following
the urgent data. This field is only be interpreted in segments with
the URG control bit set.

Options: variable

Options may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. All options are included in the
checksum. An option may begin on any octet boundary. There are two
cases for the format of an option:

Case 1: A single octet of option-kind.

Case 2: An octet of option-kind, an octet of option-length, and
the actual option-data octets.

The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.

Note that the list of options may be shorter than the data offset
field might imply. The content of the header beyond the
End-of-Option option must be header padding (i.e., zero).

A TCP must implement all options.

[Page 17]



September 1981
Transmission Control Protocol
Functional Specification

Currently defined options include (kind indicated in octal):

Kind Length Meaning

0 - End of option list.
1 - No-Operation.
2 4 Maximum Segment Size.

Specific Option Definitions

End of Option List

-----------

I0000000I1
-----------

Kind=O

This option code indicates the end of the option list. This
might not coincide with the end of the TCP header according to
the Data Offset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwise coincide with the end of the TCP
header.

No-Operation

I it----------

I00000001 I
-----------

Kind=1

This option code may be used between options, for example, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
receivers must be prepared to process options even if they do
not begin on a word boundary.

Maximum Segment Size

--------- ---------------------------

I000000101000001001 max seg size
+---------- --------------- +------------

Kind=2 Length=4

[Page 18]

"A



September 1981
Transmission Control Protocol

Functional Specification

Maximum Segment Size Option Data: 16 bits

If this option is present, then it communicates the maximum
receive segment size at the TCP which sends this segment.
This field must only be sent in the initial connection request
(i.e., in segments with the SYN control bit set). If this
option is not used, any segment size is allowed.

Padding: variable

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is composed of
zeros.

3.2. Terminology

Before we can discuss very much about the operation of the TCP we need
to introduce some detailed terminology. The maintenance of a TCP
connection requ.,'es the remembering of several variables. We conceive
of these variables being stored in a connection record called a
Transmission Control Block or TCB. Among the variables stored in the
TCB are the local and remote socket numbers, the security and
precedence of the connection, pointers to the user's send and receive
buffers, pointers to the retransmit queue and to the current segment.
In addition several variables relating to the send and receive
sequence numbers are stored in the TCB.

Send Sequence Variables

SND.UNA - send unacknowledged
SND.NXT - send next
SND.WND - send window
SND.UP - send urgent pointer
SND.WL1 - segment sequence number used for last window update
SND.WL2 - segment acknowledgment number used for last window

update
ISS - initial send sequence number

Receive Sequence Variables

RCV.NXT - receive next
RCV.WND - receive window
RCV.UP - receive urgent pointer
IRS - initial receive sequence number
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The following diagrams may help to relate some of these variables to

the sequence space.

Send Sequence Space

1 2 3 4

I -------- I--------I--------
SND.UNA SND.NXT SND.UNA

+SND.WND

1 - old sequence numbers which have been acknowledged
2 - sequence numbers of unacknowledged data

3 - sequence numbers allowed for new data transmission
4 - future sequence numbers which are not yet allowed

Send Sequence Space

Figure 4.

The send window is the portion of the sequence :pace labeled 3 in

figure 4.

Receive Sequence Space

1 2 3

I -------- I--------
RCV.NXT RCV.NXT

+RCV.WND

I - old sequence numbers which have been acknowledged
2 - sequence numbers allowed for new reception

3 - future sequence numbers which are not yet allowed

Receive Sequence Space

Figure 5.

The receive window is the portion of the sequence space labeled 2 in
figure 5.

There are also some variables used frequently in the discussion that
take their values from the fields of the current segment.
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Current Segment 
Variables

SEG.SEQ - segment sequence number
SEG.ACK - segment acknowledgment number
SEG.LEN - segment length
SEG.WND - segment window
SEG.UP - segment urgent pointer
SEG.PRC - segment precedence value

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
ESTABLISHED, FIN-WAIT-i, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
because it represents the state when there is no TCB, and therefore,
no connection. Briefly the meanings of the states are:

LISTEN - represents waiting for a connection request from any remote
TCP and port.

SYN-SENT - represents waiting for a matching connection request
after having sent a connection request.

SYN-RECEIVED - represents waiting for a confirming connection
request acknowledgment after having both received and sent a

connection request.

ESTABLISHED - represents an open connection, data received can be
delivered to the user. The normal state for the data transfer phase
of the connection.

FIN-WAIT-I - represents waiting for a connection termination request
from the remote TCP, or an acknowledgment of the connection
termination request previously sent.

FIN-WAIT-2 - represents waiting for a connection termination request
from the remote TCP.

CLOSE-WAIT - represents waiting for a connection termination request
from the local user.

CLOSING - represents waiting for a connection termination request
acknowledgment from the remote TCP.

LAST-ACK - represents waiting for an acknowledgment of the
connection termination request previously sent to the remote TCP
(which includes an acknowledgment of its connection termination

request).
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TIME-WAIT - represents waiting for enough time to pass to be sure
the remote TCP received the acknowledgment of its connection
termination request.

CLOSED - represents no connection state at all.

A TCP connection progresses from one state to another in response to
events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
ABORT, and STATUS; the incoming segments, particularly those
containing the SYN, ACK, RST and FIN flags; and timeouts.

The state diagram in figure 6 illustrates only state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, more detail is offered with respect to
the reaction of the TCP to events.

NOTE BENE: this diagram is only a summary and must not be taken as
the total specification.
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+----------- --- active OPEN

CLOSED I -

+----------- +< --------- \ \ create TCB
I \ \ snd SYN

passive OPEN I I CLOSE \

------- - ----------- \
create TCB j delete TCB \ \

V \ \
----------- + CLOSE I
I LISTEN I - I
----------- + delete TCB I

rcv SYN I SEND
----------- I I i V

+-----------+ snd SYN,ACK / \ snd SYN +-----------.
1< ----------------- >- I

SYN I rcv SYN I SYN I
RCVD j< ----------------------------------------------- SENT I

I snd ACK I J
SI I I
+- - - rcv ACK of SYN \ / rcv SYN,ACK ----------- +

x I snd ACK
V V

CLOSE +-----------+

- I ESTAB I
snd FIN +-----------

CLOSE I I rcv FIN

+----------- snd FIN / \ snd ACK +-----------

I FIN j< ----------------- >I CLOSE I
WAIT-I I I WAIT I

+------------+ rcv FIN \ +-----------+
r rcv ACK of FIN I CLOSE I
-------------- snd ACK -------

V x V snd FIN V
------------+ +----------- -----------

IFINWAIT-21 I CLOSING I J LAST-ACKI
+-----------+ +-----------+ +-----------+

rcv ACK of FIN I rcv ACK of FIN I
rcv FIN - TimeouE=2MSL --------------

x V ------------ x V
\ snd ACK +----------- . delete TCB +-----------+

-------------------------- >TIME WAIT I ------------------ > CLOSED I
-----------. +-----------+

TCP Connection State Diagram
Figure 6.
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3.3. Sequence Numbers

A fundamental notion in the design is that every octet of data sent
over a TCP connection has a sequence number. Since every octet is
sequenced, each of them can be acknowledged. The acknowledgment
mechanism employed is cumulative so that an acknowledgment of sequence
number X indicates that all octets up to but not including X have been
received. This mechanism allows for straight-forward duplicate
detection in the presence of retransmission. Numbering of octets
within a segment is that the first data octet immediately following
the header is the lowest numbered, and the following octets are
numbered consecutively.

It is essential to remember that the actual sequence number space is
finite, though very large. This space ranges from 0 to 2**32 - 1.
Since the space is finite, all arithmetic dealing with sequence
numbers must be performed modulo 2**32. This unsigned arithmetic
preserves the relationship of sequence numbers as they cycle from
2**32 - 1 to 0 again. There are some subtleties to computer modulo
arithmetic, so great care should be taken in programming the
comparison of such values. The symbol "=<" means "less than or equal"
(modulo 2*32).

The typical kinds of sequence number comparisons which the TCP must

perform include:

(a) Determining that an acknowledgment refers to some sequence
number sent but not yet acknowledged.

(b) Determining that all sequence numbers occupied by a segment
have been acknowledged (e.g., to remove the segment from a
retransmission queue).

(c) Determining that an incoming segment contains sequence numbers
which are expected (i.e., that the segment "overlaps" the
receive window).
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In response to sending data the TCP will receive acknowledgments. The

following comparisons are needed to process the acknowledgments.

SND.UNA = oldest unacknowledged sequence number

SND.NXT = next sequence number to be sent

SEG.ACK = acknowledgment from the receiving TCP (next sequence
number expected by the receiving TCP)

SEG.SEQ = first sequence number of a segment

SEG.LEN = the number of octets occupied by the data in the segment
(counting SYN and FIN)

SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

A new acknowledgment (called an "acceptable ack"), is one for which

the inequality below holds:

SND.UNA < SEG.ACK =< SND.NXT

A segment on the retransmission queue is fully acknowledged if the sum
of its sequence number and length is less or equal than the
acknowledgment value in the incoming segment.

When data is received the following comparisons are needed:

RCV.NXT = next sequence number expected on an incoming segments, and

is the left or lower edge of the receive window

RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
segment, and is the right or upper edge of the receive window

SEG.SEQ = first sequence number occupied by the incoming segment

SEG.SEQ SEG.LEN-1 = last sequence number occupied by the incoming

segment

A segment is judged to occupy a portion of valid receive sequence
space if

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

or

RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
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The first part of this test checks to see if the beginning of the
segment falls in the window, the second part of the test checks to see
if the end of the segment falls in the window; if the segment passes
either part of the test it contains data in the window.

Actually. it is a little more complicated than this. Due to zero
windows and zero length segments, we have four cases for the
acceptability of an incoming segment:

Segment Receive Test
Length Window

0 0 SEG.SEQ = RCV.NXT

o >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0 0 not acceptable

>0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

Note that when the receive window is zero no segments should be
acceptable except ACK segments. Thus, it is be possible for a TCP to
maintain a zero receive window while transmitting data and receiving
ACKs. However, even when the receive window is zero, a TCP must
process the RSI and URG fields of all incoming segments.

We have taken advantage of the numbering scheme to protect certain
control information as well. This is achieved by implicitly including
some control flags in the sequence space so they can be retransmitted
and acknowledged without confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segment data space. Consequently, we must adopt rules
for implicitly assigning sequence numbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence number
purposes, the SYN is considered to occur before the first actual data
octet of the segment in which it occurs, while the FIN is considered
to occur after the last actual data octet in a segment in which it
occurs. The segment length (SEG.LFN) includes both data and sequence
space occupying controls. Wher, a SYN is present then SEG.SEQ is the
sequence number of the SYN.
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Initial Sequence Number Selection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as
incarnations of the connection. The problem that arises from this is
-- "how does the TCP identify duplicate segments from previous
incarnations of the connection?" This prob'em becomes apparent if the
connection is being opened and closed in quick succession, or if the
connection breaks with loss of memory and is then reestablished.

To avoid confusion we must prevent segments from one incarnation of a
connection from being used while the same sequence numbers may still
be present in the network from an earlier incarnation. We want to
assure this, even if a TCP crashes and loses all knowledge of the
sequence numbers it has been using, When new connections are created,
an initial sequence number (ISN) generator is employed which selects a
new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
bit clock whose low order bit is incremented roughly every 4
microseconds. Thus, the ISN cycles approximately every 4.55 hours.
Since we assume that segments will stay in the network no more than
the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55
hours we can reasonably assume that ISN's will be unique.

For each connection there is a send sequence number and a receive
sequence number. The initial send sequence number (ISS) is chosen by
the data sending TCP, and the initial receive sequence number (IRS) is
learned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs must

synchronize on each other's initial sequence numbers. This is done in

an exchange of connection establishing segments carrying a control bit
called "SYN" (for synchronize) and the initial sequence numbers. As a
shorthand, segments carrying the SYN bit are also called "SYNs".
Hence, the solution requires a suitable mechanism for picking an
initial sequence number and a slightly involved handshake to exchange
the ISN's.

The synchronization requires each side to send it's own initial
sequence number and to receive a confirmation of it in acknowledgment
from the other side. Each side must also receive the other side's
initial sequence number and send a confirming acknowledgment.

1) A --> B SYN my sequence number is X
2) A <-- B ACK your sequence number is X
3) A <-- B SYN my sequence number is Y
4) A --> B ACK your sequence number is Y
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Because steps 2 and 3 can be combined in a single message this is
called the three way (or three message) handshake.

A three way handshake is necessary because sequence numbers are not
tied to a global clock in the network, and TCPs may have different
mechanisms for picking the ISN's. The receiver of the first SYN has
no way of knowing whether the segment was an old delayed one or not,
unless it remembers the last sequence number used on the connection
(which is not always possible), and so it must ask the sender to
verify this SYN. The three way handshake and the advantages of a
clock-driven scheme are discussed in [3].

Knowing When to Keep Quiet

To be sure that a TCP does not create a segment that carries a
sequence number which may be duplicated by an old segment remaining in
the network, the TCP must keep quiet for a maximum segment lifetime
(MSL) before assigning any sequence numbers upon starting up or
recovering from a crash in which memory of sequence numbers in use was
lost. For this specification the MSL is taken to be 2 minutes. This
is an engineering choice, and may be changed if experience indicates
it is desirable to do so. Note that if a TCP is reinitialized in some
sense, yet retains its memory of sequence numbers in use, then it need
not wait at all: it must only be sure to use sequence numbers larger
than those recently used.

The TCP Quiet Time Concept

This specification provides that hosts which "crash" without
retaining any knowledge of the last sequence numbers transmitted on
each active (i.e., not closed) connection shall delay emitting any
TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
in the internet system of which the host is a part. In the
paragraphs below, an explanation for this specification is given.
TCP implementors may violate the "quiet time" restriction, but only
at the risk of causing some old data to be accepted as new or new
data rejected as old duplicated by some receivers in the internet
system.

TCPs consume sequence number space each time a segment is formed and
entered into the network output queue at a source host. The
duplicate detection and sequencing algorithm in the TCP protocol
relies on the unique binding of segment data to sequence space to
the extent that sequence numbers will not cycle through all 2**32
values before the segment data bound to those sequence numbers has
been delivered and acknowledged by the receiver and all duplicate
copies of the segments have "drained" from the internet. Without
such an assumption, two distinct TCP segments could conceivably be
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assigned the same or overlapping sequence numhers, causing confusion
at the receiver as to which data is new and which is old. Remember
that each segment is bound to as many consecutive sequence numbers
as there are octets of data in the segment.

Under normal conditions, TCPs keep track of the next sequence number
to emit and the oldest awaiting acknowledgment so as to avoid
mistakenly using a sequence number over before its first use has
been acknowledged. This alone does not guarantee that old duplicate
data is drained from the net, so the sequence space has been made

very large to reduce the probability that a wandering duplicate will
cause trouble upon arrival. At 2 megabits/sec. it takes 4.5 hours
to use up 2**32 octets of sequence space. Since the maximum segment
lifetime in the net is not likely to exceed a few tens of seconds,
this is deemed ample protection for foreseeable nets, even if data
rates escalate to 10's of megabits/sec. At 100 megabits/sec, t he
cycle time is 5.4 minutes which may be a little short, but still
within reason.

The basic duplicate detection and sequencing algorithm in TCP can be
defeated, however, if a source TCP does not have any memory of the
sequence numbers it last used on a given connection. For example, if
the TCP were to start all connections with sequence number 0, then
upon crashing and restarting, a TCP might re-form an earlier
connection (possibly after half-open connection resolution) and emit
packets with sequence numbers identical to or overlapping with
packets still in the network which were emitted on an earlier
incarnation of the same connection. In the absence of knowledge
about the sequence numbers used on a particular connection, the TCP
specification recommends that the source delay for MSL seconds
before emitting segments on the connection, to allow time for

segments from the earlier connection incarnation to drain from the
system.

Even hosts which can remember the time of day and used it to select
initial sequence number values are not immune from this problem
(i.e., even if time of day is used to select an initial sequencenumber for each new connection incarnation).

Suppose, for example, that a connection is opened starting with
sequence number S. Suppose that this connection is not used much
and that eventually the initial sequence number function (ISN(t))
takes on a value equal to the sequence number, say S1, of the lest
segment sent by this TCP on a particular connection. Now suppose,
at this instant, the host crashes, recovers, and establishes a new
incarnation of the connection. The initial sequence number chosen is
S1 = ISN(t) -- last used sequence number on old incarnation of
connection! If the recovery occurs quickly enough, any old
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duplicates in the net bearing sequence numbers in the neighborhood
of SI may arrive and be treated as new packets by the receiver of
the new incarnation of the connection.

The problem is that the recovering host may not know for how long it
crashed nor does it know whether there are still old duplicates in
the system from earlier connection incarnations.

One way to deal with this problem is to deliberately delay emitting
segments for one MSL after recovery from a crash- this is the "quite
time" specification. Hosts which prefer to avoid waiting are
willing to risk possible confusion of old and new packets at a given
destination may choose not to wait for the "quite time".
Implementors may provide TCP users with the ability to select on a
connection by connection basis whether to wait after a crash, or may
informally implement the "quite time" for all connections.
Obviously, even where a user selects to "wait," this is not
necessary after the host has been "up" for at least MSL seconds.

To summarize: every segment emitted occupies one or more sequence
numbers in the sequence space, the numbers occupied by a segment are
"busy" or "in use" until MSL seconds have passed, upon crashing a
block of space-time is occupied by the octets of the last emitted
segment, if a new connection is started too soon and uses any of the
sequence numbers in the space-time footprint of the last segment of
the previous connection incarnation, there is a potential sequence
number overlap area which could cause confusion at the receiver.

3.4. Establishing a connection

The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the procedure. When simultaneous attempt
occurs, each TCP receives a "SYN" segment which carries no
acknowledgment after it has sent a "SYN". Of course, the arrival of
an old duplicate "SYN" segment can potentially make it appear, to the
recipient, that a simultaneous connection initiation is in progress.
Proper use of "reset" segments can disambiguate these cases.

Several examples of connection initiation follow. Although these
examples do not show connection synchronization using data-carrying
segments, this is perfectly legitimate, so long as the receiving TCP
doesn't deliver the data to the user until it is clear the data is
valid (i.e., the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state). The three-way handshake
reduces the possibility of false connections. It is the
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implementation of a trade-off between memory and messages to provide
information for this checking.

The simplest three-way handshake is shown in figure 7 below. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segment from TCP A to TCP B, or arrival of a
segment at B from A. Left arrows (<--), indicate the reverse.
Ellipsis (... ) indicates a segment which is still in the network
(delayed). An "XXX" indicates a segment which is lost or rejected.
Comments appear in parentheses. TCP states represent the state AFTER
the departure or arrival of the segment (whose contents are shown in
the center of each line). Segment contents are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other
fields such as window, addresses, lengths, and text have been left out
in the interest of clarity.

TCP A TCP B

1. CLOSED LISTEN

2. SYN-SENT -- > <SEQ=100><CTL=SYN> --> SYN-RECEIVED

3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> -- > ESTABLISHED

Basic 3-Way Handshake for Connection Synchronization

Figure 7.

In line 2 of figure 7, TCP A begins by sending a SYN segment
indicating that it will use sequence numbers starting with sequence
number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it
received from TCP A. Note that the acknowledgment field indicates TCP
B is now expecting to hear sequence 101, acknowledging the SYN which
occupied sequence 100.

At line 4, TCP A responds with an empty segment containing an ACK for
TCP B's SYN; and in line 5, TCP A sends some data. Note that the
sequence number of the segment in line 5 is the same as in line 4
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACK's!).
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Simultaneous initiation is only slightly more complex, as is shown in
figure 8. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
ESTABLISHED.

TCP A TCP B

1. CLOSED CLOSED

2. SYN-SENT -- > <SEQ=1DO><CTL=SYN>

3. SYN-RECEIVED <-- <SEQ=3OO><CTL=SYN> <-- SYN-SENT

4. ... <SEQ=lOO><CTL=SYN> --> SYN-RECEIVED

5. SYN-RECEIVED --> <SEQ=lOO><ACK=301><CTL=SYN,ACK> •.

6. ESTABLISHED <-- <SEQ=300><ACK=1Oi><CTL=SYN,ACK> <-- SYN-RECEIVED

7. ... <SEQ=1O1><ACK=3OI><CTL=ACK> --> ESTABLISHED

Simultaneous Connection Synchronization

Figure 8.

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control message, reset, has been devised. If the
receiving TCP is in a non-synchronized state (i.e., SYN-SENT,
SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
If the TCP is in one of the synchronized states (ESTABLISHED,
FIN-WAIT-i, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
aborts the connection and informs its user. We discuss this latter
case under "half-open" connections below.

[Page 32]



September 1981
Transmission Control Protocol

Functional Specification

TCP A TCP B

1. CLOSED LISTEN

2. SYN-SENT -- > <SEQ=1OO><CTL=SYN> ...

3. (duplicate) ... <SEQ=9O><CTL=SYN> --> SYN-RECEIVED

4. SYN-SENT <-- <SEQ=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

6. ... <SEQ=1OO><CTL=SYN> --> SYN-RECEIVED

7. SYN-SENT <-- <SEQ=4OO><ACK=1O1><CTL=SYN,ACK> <-- SYN-RECEIVED

8. ESTABLISHED --> <SEQ=1O1><ACK=4O1)<CTL=ACK> --> ESTABLISHED

Recovery from Old Duplicate SYN

Figure 9.

As a simple example of recovery from old duplicates, consider
figure 9. At line 3, an old duplicate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normally
(line 4). TCP A detects that theACK field is incorrect and returns a
RST (reset) with its SEQ field selected to make the segment
believable. TCP B, on receiving the RST, returns to the LISTEN state.
When the original SYN (pun intended) finally arrives at line 6, the
synchronization proceeds normally. If the SYN at line 6 had arrived
before the RST, a more complex exchange might have occurred with RST's
sent in both directions.

Half-Open Connections and Other Anomalies

An established connection is said to be "half-open" if one of the
TCPs has closed or aborted the connection at its end without the
knowledge of the other, or if the two ends of the connection have

become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an
attempt is made to send data in either direction. However, half-open

connections are expected to be unusual, and the recovery procedure is
mildly involved.

If at site A the connection no longer exists, then an attempt by the
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user at site B to send any data on it will result in the site B TCP
receiving a reset control message. Such a message indicates to the
site B TCP that something is wrong, and it is expected to abort the

connection.

Assume that two user processes A and B are communicating with one

another when a crash occurs causing loss of memory to A's TCP.
Depending on the operating system supporting A's TCP, it is likely
that some error recovery mechanism exists. When the TCP is up again,
A is likely to start again from the beginning or from a recovery

point. As a result, A will probably try to OPEN the connection again
or try to SEND on the connection it believes open. In the latter
case, it receives the error message "connection not open" from the
local (A's) TCP. In an attempt to establish the connection, A's TCP
will send a segment containing SYN. This scenario leads to the

example shown in figure 10. After TCP A crashes, the user attempts to
re-open the connection. TCP B, in the meantime, thinks the connection
is open.

TCP A TCP B

1. (CRASH) (send 300,receive 100)

2. CLOSED ESTABLISHED

3. SYN-SENT --> <SEQ=400><CTL=SYN> -- > (??)

4. (<!) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

6. SYN-SENT CLOSED

7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

Half-Open Connection Discovery

Figure 10.

When the SYN arrives at line 3, TCP B, being in a synchronized state,
and the incoming segment outside the window, responds with an
acknowledgment indicating what sequence it next expects to hear (ACK
100). TCP A sees that this segment does not acknowledge anything it

sent and, being unsynchronized, sends a reset (RST) because it has

detected a half-open connection. TCP B aborts at line 5. TCP A will
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continue to try to establish the connection; the problem is now
reduced to the basic 3-way handshake of figure 7.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection.
This is illustrated in figure 11. In this case, the data arriving at
TCP A from TCP B (line 2) is unacceptable because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aborts the connection.

TCP A TCP B

1. (CRASH) (send 300,receive 100)

2. (??) <-- <SEQ=30O><ACK=10O><DATA=10><CTL=ACK> <-- ESTABLISHED

3. --> <SEQ=100><CTL=RST> --" (ABORT!!)

Active Side Causes Half-Open Connection Discovery

Figure 11.

In figure 12, we find the two TCPs A and B with passive connections
waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to

generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LISTEN state.

TCP A TCP B

1. LISTEN LISTEN

2. ... <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK> <-- SYN-RECEIVED

4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN!)

5. LISTEN LISTEN

Old Duplicate SYN Initiates a Reset on two Passive Sockets

Figure 12.
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A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Reset Generation

As a general rule, reset (RST) must be sent whenever a segment arrives
which apparently is not intended for the current connection. A reset
must not be sent if it is not clear that this is the case.

There are three groups of states:

1. If the connection does not exist (CLOSED) then a reset is sent
in response to any incoming segment except another reset. In
particular, SYNs addressed to a non-existent connection are rejected
by this means.

If the incoming segment has an ACK field, the reset takes its
sequence number from the ACK field of the segment, otherwise the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segment.
The connection remains in the CLOSED state.

2. If the connection is in any non-synchronized state (LISTEN,
SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
something not yet sent (the segment carries an unacceptable ACK), or
if an incoming segment has a security level or compartment which
does not exactly match the level and compartment requested for the
connection, a reset is sent.

If our SYN has not been acknowledged and the precedence level of the
incoming segment is higher than the precedence level requested then
either raise the local precedence level (if allowed by the user and
the system) or send a reset; or if the precedence level of the
incoming segment is lower than the precedence level requested then
continue as if the precedence matched exactly (if the remote TCP
cannot raise the precedence level to match ours this will be
detected in the next segment it sends, and the connection will be
terminated then). If our SYN has been acknowledged (perhaps in this
incoming segment) the precedence level of the incoming segment must
match the local precedence level exactly, if it does not a reset
must be sent.

If the incoming segment has an ACK field, the reset takes its
sequence number from the ACK field of the segment, otherwise the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segnient.
The connection remains in the same state.
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3. If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT-I, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
any unacceptable segment (out of window sequence number or
unacceptible acknowledgment number) must elicit only an empty
acknowledgment segment containing the current send-sequence number
and an acknowledgment indicating the next sequence number expected
to be received, and the connection remains in the same state.

If an incoming segment has a security level, or compartment, or
precedence which does not exactly match the level, and compartment,
and precedence requested for the connection,a reset is sent and
connection goes to the CLOSED state. The reset takes its sequence
number from the ACK field of the incoming segment.

Reset Processing

In all states except SYN-SENT, all reset (RST) segments are validated
by checking their SEQ-fields. A reset is valid if its sequence number
is in the window. In the SYN-SENT state (a RST received in response
to an initial SYN), the RST is acceptable if the ACK field
acknowledges the SYN.

The receiver of a RST first validates it, then changes state. If the
receiver was in the LISTEN state, it ignores it. If the receiver was
in SYN-RECEIVED state and had previously been in the LISTEN state,
then the receiver returns to the LISTEN state, otherwise the receiver
aborts the connection and goes to the CLOSED state. If the receiver
was in any other state, it aborts the connection and advises the user
and goes to the CLOSED state.

3.5. Closin' a Connection

CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full-duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. We have chosen to treat CLOSE
in a simplex fashion. The user who CLOSEs may continue to RECEIVE
until he is told that the other side has CLOSED also. Thus, a program
could initiate several SENDs followed by a CLOSE, and then continue to
RECEIVE until signaled that a RECEIVE failed because the other side
has CLOSED. We assume that the TCP will signal a user, even if no
RECEIVEs are outstanding, that the other side has closed, so the user
can terminate his side gracefully. A TCP will reliably deliver all
buffers SENT before the connection was CLOSED so a user who expects no
data in return need only wait to hear the connection was CLOSED
successfully to know that all his data was received at the destination
TCP. Users must keep reading connections they close for sending until
the TCP says no more data.
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There are essentially three cases:

1) The user initiates by telling the TCP to CLOSE the connection

2) The remote TCP initiates by sending a FIN control signal

3) Both users CLOSE simultaneously

Case 1: Local user initiates the close

In this case, a FIN segment can be constructed and placed on the
outgoing segment queue. No further SENDs from the user will be
accepted by the TCP, and it enters the FIN-WAIT-1 state. RECEIVEs
are allowed in this state. All segments preceding and including FIN
will be retransmitted until acknowledged. When the other TCP has
both acknowledged the FIN and sent a FIN of its own, the first TCP
can ACK this FIN. Note that a TCP receiving a FIN will ACK but not
send its own FIN until its user has CLOSED the connection also.

Case 2: TCP receives a FIN from the network

If an unsolicited FIN arrives from the network, the receiving TCP
can ACK it and tell the user that the connection is closing. The
user will respond with a CLOSE, upon which the TCP can send a FIN to
the other TCP after sending any remaining data. The TCP then waits
until its own FIN is acknowledged whereupon it deletes the
connection. If an ACK is not forthcoming, after the user timeout
the connection is aborted and the user is told.

Case 3: both users close simultaneously

A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segments preceding the FINs
have been processed and acknowledged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connection.

i
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TCP A TCP B

1. ESTABLISHED ESTABLISHED

2. (Close)
FIN-WAIT-i -- <SEQ=100><ACK=300><CTL=FIN,ACK> -- > CLOSE-WAIT

3. FIN-WAIT-2 <-- (SEQ=30O)(ACK=1O1>(CTL=ACK> <-- CLOSE-WAIT

4. (Close)
TIME-WAIT <-- (SEQ=3OQ>(ACK=1O1><CTL=FIN,ACK> <-- LAST-ACK

5. TIME-WAIT -- > <SEQ=1O1>XACK=3O1><CTL=ACK> -- > CLOSED

6. (2 MSL)
CLOSED

Normal Close Sequence

Figure 13.

TCP A TCP B

1. ESTABLISHED ESTABLISHED

2. (Close) (Close)
FIN-WAIT-i -- > <SEQ=100>(ACKt3OO><CTL=FIN,ACK> . .. FIN-WAIT-i

<-- <SEQ=30O><ACKz1OO><CTL=FIN,ACK> <--
..<SEQ=100>(ACKz3OO><CTL=FIN,ACK> -- >

3. CLOSING -- > (SEQ=i0i>(ACKz3Oi>(CTL=ACK> . .. CLOSING
<-- <SEQ=3O1>(ACK%101><CTL=ACK> <_

(2 MSL) (2 MSL)
CLOSED CLOSED
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3.6. Precedence and Security

The intent is that connection be allowed only between ports operating
with exactly the same security and compartment values and at the
higher of the precedence level requested by the two ports.

The precedence and security parameters used in TCP are exactly those
defined in the Internet Protocol (IP) Throughout this TCP
specification the term "security/compi, ?nt" is intended to indicate
the security parameters used in IP in, ucing security, compartment,
user group, and handling restriction.

A connection attempt with mismatched security/compartment values or a
lower precedence value must be rejected by sending a reset. Rejecting
a connection due to too low a precedence only occurs after an
acknowledgment of the SYN has been received.

Note that TCP modules which operate only at the default value of
precedence will still have to check the precedence of incoming
segments and possibly raise the precedence level they use on the
connection.

The security paramaters may be used even in a non-secure environment
(the values would indicate unclassified data), thus hosts in
non-secure environments must be prepared to receive the security
parameters, though they need not send them.

3.7. Data Communication

Once the connection is established data is communicated by the
exchange of segments. Because segments may be lost due to errors
(checksum test failure), or network congestion, TCP uses
retransmission (after a timeout) to ensure delivery of every segment.
Duplicate segments may arrive due to network or TCP retransmission.
As discussed in the section on sequence numbers the TCP performs
certain tests on the sequence and acknowledgment numbers in the
segments to verify their acceptability.

The sender of data keeps track of the next sequence number to use in
the variable SND.NXT. The receiver of data keeps track of the next
sequence number to expect in the variable RCV.NXT. The sender of data
keeps track of the oldest unacknowledged sequence number in the
variable SND.UNA. If the data flow is momentarily idle and all data
sent has been acknowledged then the three variables will be equal.

When the sender creates a segment and transmits it the sender advances
SND.NXT. When the receiver accepts a segment it advances RCV.NXT and
sends an acknowledgment. When the data sender receives an
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acknowledgment it advances SND.UNA. The extent to which the values of
these variables differ is a measure of the delay in the communication.
The amount by which the variables are advanced is the length of the
data in the segment. Note that once in the ESTABLISHED state all
segments must carry current acknowledgment information.

The CLOSE user call implies a push function, as does the FIN control
flag in an incoming segment.

Retransmission Timeout

Because of the variability of the networks that compose an
internetwork system and the wide range of uses of TCP connections tha
retransmission timeout must be dynamically determined. One procedure
for determining a retransmission time out is given here as an
illustration.

An Example Retransmission Timeout Procedure

Measure the elapsed time between sending a data octet with a
particular sequence number and receiving an acknowledgment that
covers that sequence number (segments sent do not have to match
segments received). This measured elapsed time is the Round Trip
Time (RTT). Next compute a Smoothed Round Trip Time (SRTT) as:

SRTT = ( ALPHA * SRTT ) + ((1-ALPHA) * RTT)

and based on this, compute the retransmission timeout (RTO) as:

RTO = min[UBOUNDmax[LBOUND,(BETA*SRTT)]]

where UBOUND is an upper bound on the timeout (e.g., I minute),
LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
factor (e.g., 1.3 to 2.0).

The Communication of Urgent Information

The objective of the TCP urgent mechanism is to allow the sending user
to stimulate the receiving user to accept some urgent data and to
permit the receiving TCP to indicate to the receiving user when all
the currently known urgent data has been received by the user.

This mechanism permits a point in the data stream to be designated as
the end of urgent information. Whenever this point is in advance of
the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
must tell the user to go into "urgent mode"; when the receive sequence
number catches up to the urgent pointer, the TCP must tell user to go
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into "normal mode". If the urgent pointer is updated while the user
is in "urgent mode", the update will be invisible to the user.

The method employs a urgent field which is carried in all segments
transmitted. The URG control flag indicates that the urgent field is
meaningful and must be added to the segment sequence number to yield
the urgent pointer. The absence of this flag indicates that there is
no urgent data outstanding.

To send an urgent indication the user must also send at least one data
octet. If the sending user also indicates a push, timely delivery of
the urgent information to the destination process is enhanced.

Managing the Window

The window sent in each segment indicates the range of sequence
numbers the sender of the window (the data receiver) is currently
prepared to accept. There is an assumption that this is related to
the currently available data buffer space available for this
connection.

Indicating a large window encourages transmissions. If more data
arrives than can be accepted, it will be discarded. This will result
in excessive retransmissions, adding unnecessarily to the load on the
network and the TCPs. Indicating a small window may restrict the
transmission of data to the point of introducing a round trip delay
between each new segment transmitted.

The mechanisms provided allow a TCP to advertise a large window and to
subsequently advertise a much smaller window without having accepted
that much data. This, so called "shrinking the window," is strongly
discouraged. The robustness principle dictates that TCPs will not
shrink the window themselves, but will be prepared for such behavior
on the part of other TCPs.

The sending TCP must be prepared to accept from the user and send at
least one octet of new data even if the send window is zero. The
sending TCP must regularly retransmit to the receiving TCP even when
the window is zero. Two minutes is recommended for the retransmission
interval when the window is zero. This retransmission is essential to
guarantee that when either TCP has a zero window the re-opening of the
window will be reliably reported to the other.

When the receiving TCP has a zero window and a segment arrives it must
still send an acknowledgment showing its next expectec sequence number
and current window (zero).

The sending TCP packages the data to be transmitted into segments
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which fit the current winj.-, and may repackage segments on the

retransmission queue. Such repackaging is not required, but may be

helpful.

In a connection with a one-way data flow, the window information will

be carried in acknowledgment segments that all have the same sequence
number so there will be no way to reorder them if they arrive out of

order. This is not a serious problem, but it will allow the window
information to be on occasion temporarily based on old reports from

the data receiver. A refinement to avoid this problem is to act on

the window information from segments that carry the highest
acknowledgment number (that is segments with acknowledgment number
equal or greater than the highest previously received).

The window management procedure has significant influence on the

communication performance. The following comments are suggestions to
implementers.

Window Management Suggestions

Allocating a very small window causes data to be transmitted in
many small segments when better performance is achieved using

fewer large segments.

One suggestion for avoiding small windows is for the receiver to

defer updating a window until the 3dditional allocation is at
least X percent of the maximum allocation possible for the

connection (where X might be 20 to 40).

Another suggestion is for the sender to avoid sending small

segments by waiting until the window is large enough before
sending data. If the the user signals a push function then the
data must be sent even if it is a small segment.

Note that the acknowledgments should not be delayed or unnecessary
retransmissions will result. One strategy would be to send an

acknowledgment when a small segment arrives (with out updating the
window information), and then to send another acknowledgment with
new window information when the window is larger.

The segment sent to probe a zero window may also begin a break up

of transmitted data into smaller and smaller segments. If a

segment containing a single data octet sent to probe a zero window
is accepted, it consumes one octet of the window now available.

If the sending TCP simply sends as much as it can whenever the
window is non zero, the transmitted data will be broken into

alternating big and small segments. As time goes on, occasional

pauses in the receiver making window allocation available will
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result in breaking the big segments into a small and not quite so
big pair. And after a while the data transmission will be in
mostly small segments.

The suggestion here is that the TCP implementations need to
actively attempt to combine small window allocations into larger
windows, since the mechanisms for managing the window tend to lead
to many small windows in the simplest minded implementations.

3.8. Interfaces

There are of course two interfaces of concern: the user/TCP interface
and the TCP/lower-level interface. We have a fairly elaborate model
of the user/TCP interface, but the interface to the lower level
protocol module is left unspecified here, since it will be specified
in detail by the specification of the lowel level protocol. For the
case that the lower level is IP we note some of the parameter values
that TCPs might use.

User/TCP Interface

The following functional description of user commands to the TCP is,
at best, fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different 'P
implementations may have different user interfaces. However, al,
TCPs must provide a certain minimum set of services to guarantee
that all TCP implementations can support the same protocol
hierarchy. This section specifies the functional interfaces
required of all TCP implementations.

TCP User Commands

The following sections functionally characterize a USER/TCP
interface, The notation used is similar to most procjdure or
function calls in high level languages, but this usage is not
meant to rule out trap type service calls (e.g., SVCs, UUOs,
EMTs).

The user commands described below specify the basic functions the
TCP must perform to support interprocess communication.
Iruividual implementations must define their own exact format, and
may provide combinations or subsets of the basic functions in
single calls. In particular, some implementations may wish to
automatically OPEN a connection on the first SEND or RECEIVE
issued by the user for a given connection.
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In providing interprocess communication facilities, the TCP must
not only accept commands, but must also return information to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
remote close, binding of unspecified foreign socket).

(b) replies to specific user commands indicating success or
various types of failure.

Open

Format: OPEN (local port, foreign socket, active/passive
[, timeout] [, precedence] [, security/compartment] [, options])
-> local connection name

We assume that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the
implementation of the TCP, the local network and TCP identifiers

for the source address will either be supplied by the TCP or the
lower level protocol (e.g., IP). These considerations are the
result of concern about security, to the extent that no TCP be
able to masquerade as another one, and so on. Similarly, no
process can masquerade as another without the collusion of the
TCP.

If the active/passive flag is set to passive, then this is a
call to LISTEN for an incoming connection. A passive open may
have either a fully specified foreign socket to wait for a
particular connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be made active
by the bubsequent execution of i SEND.

A transmission control block (TCB) is created and partially
filled in with data from the OPEN command parameters.

On an active OPEN command, the TCP will begin the procedure to
synchronize (i.e., establish) the connection at once.

The timeout, if present, permits the caller to set up a timeout
for all data submitted to TCP. If data is not successfully
delivered to the destination within the timeout period, the TCP
will abort the connection. The present global default is five
minutes.

The TCP or some component of the operating system will verify
the users authority to open a connection with the specified
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precedence or security/compartment. The absence of precedence
or security/compartment specification in the OPEN call indicates
the default values must be used.

TCP will accept incoming requests as matching only if the
security/compartment information is exactly the same and only if
the precedence is equal to or higher than the precedence
requested in the OPEN call.

The precedence for the connection is the higher of the values
requested in the OPEN call and received from the incoming
request, and fixed at that value for the life of the
connection.Implementers may want to give the user control of
this precedence negotiation. For example, the user might be
allowed to specify that the precedence must be exactly matched,
or that any attempt to raise the precedence be confirmed by the
user.

A local connection name will be returned to the user by the TCP.
The local connection name can then be used as a short hand term
for the connection defined by the <local socket, foreign socket>
pair.

Send

Format: SEND (local connection name, buffer address, byte
count, PUSH flag, URGENT flag [,timeout])

This call causes the data contained in the indicated user buffer
to be sent on the indicated connection. If the connection has
not been opened, the SEND is considered an error. Some
implementations may allow users to SEND first; in which case, an

automatic OPEN would be done. If the calling process is not
authorized to use this connection, an error is returned.

If the PUSH flag is set, the data must be transmitted promptly
to the receiver, and the PUSH bit will be set in the last TCP
segment created from the buffer. If the PUSH flag is not set,
the data may be combined with data from subsequent SENDs for
transmission efficiency.

If the URGENT flag is set, segments sent to the destination TCP
will have the urgent pointer set. The receiving TCP will signal
the urgent condition to the receiving process if the urgent
pointer indicates that data preceding the urgent pointer has not
been consumed by the receiving process. The purpose of urgent
is to stimulate the receiver to process the urgent data and to
indicate to the receiver when all the currently known urgent
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data has been received. The number of times the sending user's
TCP signals urgent will not necessarily be equal to the number
of times the receiving user will be notified of the presence of
urgent data.

If no foreign socket was specified in the OPEN. but the
connection is established (e.g., because a LISTENing connection
has become specific due to a foreign segment arriving for the
local socket), then the designated buffer is sent to the implied
foreign socket. Users who make use of OPEN with an unspecified
foreign socket can make use of SEND without ever explicitly
knowing the foreign socket address.

However, if a SEND is attempted before the foreign socket
becomes specified, an error will be returned. Users can use the
STATUS call to determine the status of the connection. In some
implementations the TCP may notify the user when an unspecified
socket is bound.

If a timeout is specified, the current user timeout for this
connection is changed to the new one.

In the simplest implementation, SEND would not return control to
the sending process until either the transmission was complete
or the timeout had been exceeded. However, this simple method
is both subject to deadlocks (for example, both sides of the
connection might try to do SENDs before doing any RECEIVEs) and
offers poor performance, so it is not recommended. A more
sophisticated implementation would return immediately to allow
the process to run concurrently with network I/O, and,
furthermore, to allow multiple SENDs to be in progress.
Multiple SENDs are served in first come, first served order, so
the TCP will queue those it cannot service immediately.

We have implicitly assumed an asynchronous user interface in
which a SEND later elicits some kind of SIGNAL or
pseudo-interrupt from the serving TCP. An alternative is to
return a response immediately. For instance, SENDs might return
immediate local acknowledgment, even if the segment sent had not
been acknowledged by the distant TCP. We could optimistically
assume eventual success. If we are wrong, the connection will
close anyway due to the timeout. In implementations of this
kind (synchronous), there will still be some asynchronous
signals, but these will deal with the connection itself, and not
with specific segments or buffers.

In order for the process to distinguish among error or success
indications for different SENDs, it might be appropriate for the
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buffer address to be returned along with the coded response to
the SEND request. TCP-to-user signals are discussed below,
indicating the information which should be returned to the

calling process.

Receive

Format: RECEIVE (local connection name, buffer address, byte

count) -> byte count, urgent flag, push flag

This command allocates a receiving buffer associated with the
specified connection. If no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned.

In the simplest implementation, control would not return to the
calling program until either the buffer was filled, or some
error occurred, but this scheme is highly subject to deadlocks.
A more sophisticated implementation would permit several
RECEIVEs to be outstanding at once. These would be filled as
segments arrive. This strategy permits increased throughput at
the cost of a more elaborate scheme (possibly asynchronous) to
notify the calling program that a PUSH has been seen or a buffer
filled.

If enough data arrive to fill the buffer before a PUSH is seen,
the PUSH flag will not be set in the response to the RECEIVE.
The buffer will be filled with as much data as it can hold. If
a PUSH is seen before the buffer is filled the buffer will be
returned partially filled and PUSH indicated.

If there is urgent data the user will have been informed as soon
as it arrived via a TCP-to-user signal. The receiving user
should thus be in "urgent mode". If the URGENT flag is on,
additional urgent data remains. If the URGENT flag is off, this
call to RECEIVE has returned all the urgent data, and the user
may now leave "urgent mode". Note that data following the
urgent pointer (non-urgent data) cannot be delivered to the user
in the same buffer with preceeding urgent data unless the

boundary is clearly marked for the user.

To distinguish among several outstanding RECEIVEs and to take
care of the case that a buffer is not completely filled, the
return code is accompanied by both a buffer pointer and a byte
count indicating the actual length of the data received.

Alternative implementations of RECEIVE might have the TCP
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allocate buffer storage, or the TCP might share a ring buffer

with the user.

Close

Format: CLOSE (local connection name)

This command causes the connectioi specified to be closed. If
the connection is not open or the calling process is not
authorized to use this connection, an error is returned.
Closing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmitted), as flow control permits, until all have been
serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECEIVE on CLOSING connections, since the other side
may be trying to transmit the last of its data. Thus, CLOSE
means "I have no more to send" but does not mean "I will not
receive any more." It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid
of all its data before timing out. In this event, CLOSE turns
into ABORT. and the closing TCP gives up.

The user may CLOSE the connection at any time on his own
initiative, or in response to various prompts from the TCP
(e.g., remote close executed, transmission timeout exceeded,
destination inaccessible).

Because closing a connection requires communication with the
foreign TCP, connections may remain in the closing state for a
short time. Attempts to reopen the connection before the TCP
replies to the CLOSE command will result in error responses.

Close also implies push function.

Status

Format: STATUS (local connection name) -> status data

This is an implementation dependent user command and could be

excluded without adverse effect. Information returned would
typically come from the TCB associated with the conne .ion.

This command returns a data block containing the following
information:

local socket,
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foreign socket,
local connection name,
receive window,

send window,
connection state,
number of buffers awaiting acknowledgi.ent,
number of buffers pending receipt,
urgent state,
precedence,

security/compartment,

and transmission timeout.

Depending on the state of the connection, or on the
implementation itself, some of this information may not be
available or meaningful. If the calling process is not
authorized to use this connection, an error is returned. This
prevents unauthorized processes from gaining information about a
connection.

Abort

Format: ABORT (local connection name)

This command causes all pending SENDs and RECEIVES to be

aborted, the TCB to be removed, and a special RESET message to
be sent to the TCP on the other side of the connection.
Depending on the implementation, users may receive abort
indications for each outstanding SEND or RECEIVE, or may simply
receive an ABORT-acknowledgment.

TCP-to-User Messages

It is assumed that the operating system environment provides a
means for the TCP to asynchronously signal the user program. When
the TCP does signal a user program, certain information is passed
to the user. Often in the specification the information will be
an error message. In other cases there will be information
relating to the completion of processing a SEND or RECEIVE or
other user call.

The following information is provided:

Local Connection Name Always
Response String Always
Buffer Address Send & Receive
Byte count (counts bytes received) Receive
Push flag Receive

Urgent flag Receive
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TCP/Lower-Level Interface

The TCP calls on a lower level protocol module to actually send and
receive information over a network. One case is that of the ARPA
internetwork system where the lower level module is the Internet
Protocol (IP) [2].

If the lower level protocol is IP it provides arguments for a type
of service and for a time to live. TCP uses the following settings
for these parameters:

Type of Service = Precedence: routine, Delay: normal, Throughput:
normal, Reliability: normal; or 00000000.

Time to Live = one minute, or 00111100.

Note that the assumed maximum segment lifetime is two minutes.
Here we explicitly ask that a segment be destroyed if it cannot
be delivered by the internet system within one minute.

If the lower level is IP (or other protocol that provides this
feature) and source routing is used, the interface must allow the
route information to be communicated. This is especially important
so that thel source and destination addresses used in the TCP
checksum be the originating source and ultimate destination. It is
also important to preserve the return route to answer connection
requests.

Any lower level protocol will have to provide the source address,
destination address, and protocol fields, and some way to determine
the "TCP length", both to provide the functional equivlent service
of IP and to be used in the TCP checksum.
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3.9. Event Processing

The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.

The activity of the TCP can be chiracterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving segments, and timeouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection.

Events that occur:

User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments

SEGMENT ARRIVES

Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands r' -eive an
immediate return and possibly a delayed response via an event or
pseudo interrupt. In the following descriptions, the term "signal"
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open".

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
of the sequence number space. Also note that "=<" means less than or
equal to (modulo 2**32).
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A natural way to think about processing incoming segments is to

imagine that they are first tested for proper sequence number (i.e.,
that their contents lie in the range of the expected "receive window"
in the sequence number space) and then that they are generally queued
and processed in sequence number order.

When a segment overlaps other already received segments we reconstruct
the segment to contain just the new data, and adjust the header fields
to be consistent.

Note that if no state change is mentioned the TCP stays in the same
state.
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OPEN Call

OPEN Call

CLOSED STATE (i.e., TCB does not exist)

Create a new transmission control block (TCB) to hold connection
state information. Fill in local socket identifier, foreign
socket, precedence, security/compartment, and user timeout
information. Note that some parts of the foreign socket may be
unspecified in a passive OPEN and are to be filled in by the
parameters of the incoming SYN segment. Verify the security and
precedence requested are allowed for this user, if not return
"error: precedence not allowed" or "error: security/compartment
not allowed." If passive enter the LISTEN state and return. If
active and the foreign socket is unspecified, return "error:
foreign socket unspecified"; if active and the foreign socket is
specified, issue a SYN segment. An initial send sequence number
(ISS) is selected. A SYN segment of the form <SEQ=ISS><CTL=SYN>
is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
state, and return.

If the caller does not have access to the local socket specified,
return "error: connection illegal for this process". If there is
no room to create a new connection, return "error: insufficient
resources".

LISTEN STATE

If active and the foreign socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
state. Data associated with SEND may be sent with SYN segment or
queued for transmission after entering ESTABLISHED state. The
urgent bit if requested in the command must be sent with the data
segments sent as a result of this command. If there is no room to
queue the request, respond with "error: insufficient resources".
If Foreign socket was not specified, then return "error: foreign
socket unspecified".
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OPEN Call

SYN-SENT STATE
SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-I STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection already exists".
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5SND Call

SEND Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, then return
"error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

If the foreign socket is specified, then change the connection
from passive to active, select an ISS. Send a SYN segment, set
SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
associated with SEND may be sent with SYN segment or queued for
transmission after entering ESTABLISHED state. The urgent bit if
requested in the command must be sent with the data segments sent
as a result of this command. If there is no room to queue the
request, respond with "error: insufficient resources". If
Foreign socket was not specified, then return "error: foreign
socket unspecified".

SYN-SENT STATE
SYN-RECEIVED STATE

Queue the data for transmission after entering ESTABLISHED state.
If no space to queue, respond with "error: insiufficient
resources"

ESTABLISHED STATE
CLOSE-WAIT STATE

Segmentize the buffer and send it with a piggybacked
acknowledgment (acknowledgment value = RCV.NXT). If there is
insufficient space to remember this buffer, simply return "error:
insufficient resources".

If the urgent flag is set, then SNO.UP <- SND.NXT-1 and set the
urgent pointer in the outgoing segments.
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SEND Call

FIN-WAIT-i STATE
FIN-WAIT-2 STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection closing" and do not service request.
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RECEIVE Call

RECEIVE Call

CLOSED STATE (i.e., TCB does not exist)

If the user doeZ not have access to such a connection, return
"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE
SYN-SENT STATE
SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state. If there
is no room to queue this request, respond with "error:
insufficient resources".

ESTABLISHED STATE
FIN-WAIT-i STATE
FIN-WAIT-2 STATE

If insufficient incoming segments are queued to satisfy the
request, queue the request. If there is no queue space to
remember the RECEIVE, respond with "error: insufficient
resources"

Reassemble queued incoming segments into receive buffer and return
to user. Mark "push seen" (PUSH) if this is the case.

If RCV.UP is in advance of the data currently being passed to the
user notify the user of the presence of urgent data.

When the TCP takes responsibility for delivering data to the user
that fact must be communicated to the sender via an
acknowledgment. The formation of such an acknowledgment is
described below in the discussion of processing an incoming
segment.
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CLOSE-WAIT STATE

Since the remote side has already sent FIN, RECEIVEs must be
satisfied by text already on hand, but not yet delivered to the

user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response. Otherwise, any remaining
text can be used to satisfy the RECEIVE.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection closing".
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CLOSE Call

CLOSE Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
"error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVEs are returned with "error: closing"
responses. Delete TCB, enter CLOSED state, and return.

SYN-SENT STATE

Delete the TCB and return "error: closing" responses to any
queued SENDs, or RECEIVEs.

SYN-RECEIVED STATE

If no SENDs have been issued and there is no pending data to send,
then form a FIN segment and send it, and enter FIN-WAIT-1 state;
otherwise queue for processing after entering ESTABLISHED state.

ESTABLISHED STATE

Queue this until all preceding SENDs have been segmentized, then
form a FIN segment and send it. In any case, enter FIN-WAIT-1
state.

.FIN-WAIT-1 STATE

FIN-WAIT-2 STATE

Strictly speaking, this is an error and should receive a "error:
connection closing" response. An "ok" response would be
acceptable, too, as long as a second FIN is not emitted (the first
FIN may be retransmitted though).
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CLOSE Call

CLOSE-WAIT STATE

Queue this request until all preceding SENDs have been
segmentized; then send a FIN segment, enter CLOSING state.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "error: connection closing".
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ABORT Call

ABORT Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process"

Otherwise return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVEs should be returned with "error:
connection reset" responses. Delete TCB, enter CLOSED state, and
return.

SYN-SENT STATE

All queued SENDs and RECEIVEs should be given "connection reset"
notification, delete the TCB, enter CLOSED state, and return.

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-i STATE
FIN-WAIT-2 STATE

CLOSE-WAIT STATE

Send a reset segment:

<SEQ=SND.NXT><CTL=RST>

All queued SENDs and RECEIVEs should be given "connection reset"
notification; all segments queued for transmission (except for the
RST formed above) or retransmission should be flushed, delete the
TCB, enter CLOSED state, and return.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and
return.
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STATUS Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

Return "state = LISTEN", and the TCB pointer.

SYN-SENT STATE

Return "state = SYN-SENT", and the TCB pointer.

SYN-RECEIVED STATE

Return "state = SYN-RECEIVED", and the TCB pointer.

ESTABLISHED STATE

Return "state = ESTABLISHED", and the TCB pointer.

FIN-WAIT-i STATE

Return "state = FIN-WAIT-i", and the TCB pointer.

FIN-WAIT-2 STATE

Return "state = FIN-WAIT-2", and the TCB pointer.

CLOSE-WAIT STATE

Return "state = CLOSE-WAIT", and the TCB pointer.

CLOSING STATE

Return "state = CLOSING", and the TCB pointer.

LAST-ACK STATE

Return "state = LAST-ACK", and the TCB pointer.
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TIME-WAIT STATE

Return "state TIME-WAIT", and the TCB pointer.
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SEGMENT ARRIVES

If the state is CLOSED (i.e., TCB does not exist) then

all data in the incoming segment is discarded. An incoming
segment containing a RST is discarded. An incoming segment not
containing a RST causes a RST to be sent in response. The
acknowledgment and sequence field values are selected to make the
reset sequence acceptable to the TCP that sent the offending
segment.

If the ACK bit is off, sequence number zero is used,

<SEQ=O><ACK=SEG.SEQ+SEG.LEN>(CTL=RST,ACK>

If the ACK bit is on,

<SEQ=SEG.ACK><CTL=RST>

Return.

If the state is LISTEN then

first check for an RST

An incoming RST should be ignored. Return,

second check for an ACK

Any acknowledgment is bad if it arrives on a connection still in
the LISTEN state. An acceptable reset segment should be formed
for any arriving ACK-bearing segment. The RST should be
formatted as follows:

<SEQ=SEG.ACK><CTL=RST>

Return.

third check for a SYN

If the SYN bit is set, check the security. If the
security/compartment on the incoming segment does not exactly
match the security/compartment in the TCB then send a reset and
return.

<SEQ=SEG.ACK><CTL=RST>
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If the SEG.PRC is greater than the TCB.PRC then if allowed by
the user and the system set TCB.PRC<-SEG.PRC, if not allowed
send a reset and return.

<SEQ=SEG.ACK><CTL=RST>

If the SEG.PRC is less than the TCB.PRC then continue.

Set RCV.NXT to SEG.SEQ+I, IRS is set to SEG.SEQ and any other
control or text should be queued for processing later. ISS
should be selected and a SYN segment sent of the form:

<SEQ=TSS><ACK=RCV.NXT><CTL=SYN,ACK>

SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
state should be changed to SYN-RECEIVED. Note that any other
incoming control or data (combined with SYN) will be processed
in the SYN-RECEIVED state, but processing of SYN and ACK should
not be repeated. If the listen was not fully specified (i.e.,
the foreign socket was not fully specified), then the
unspecified fields should be filled in now.

fourth other text or control

Any other control or text-bearing segment (not containing SYN)
must have an ACK and thus would be discarded by the ACK
processing. An incoming RST segment could not be valid, since
it could not have been sent in response to anything sent by this
incarnation of the connection. So you are unlikely to get here,
but if you do, drop the segment, and return.

If the state is SYN-SENT then

first check the ACK bit

If the ACK bit is set

If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless
the RST bit is set, if so drop the segment and return)

<SEQ=SEG.ACK><CTL=RST>

and discard the segment. Return.

If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.

second check the RST bit
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If the RST bit is set

If the ACK was acceptable then signal the user "error:

connection reset", drop the segment, enter CLOSED state,
delete TCB, and return. Otherwise (no ACK) drop the segment
and return.

third check the security and precedence

If the security/compartment in the segment does not exactly
match the security/compartment in the TCB, send a reset

If there is an ACK

<SEQ=SEG.ACK><CTL=RST>

Otherwise

<SEQ=O><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If there is an ACK

The precedence in the segment must match the precedence in the

TCB, if not, send a reset

<SEQ=SEG.ACK><CTL=RST>

If there is no ACK

If the precedence in the segment is higher than the precedence
in the TCB then if allowed by the user and the system raise
the precedence in the TCB to that in the segment, if not
allowed to raise the prec then send a reset.

<SEQ=O><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

If the precedence in the segment is lower than the precedence

in the TCB continue.

If a reset was sent, discard the segment and return.

fourth check the SYN bit

This step should be reached only if the ACK is ok, or there is
no ACK, and it the segment did not contain a RST.

If the SYN bit is on and the security/compartment and precedence
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are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if there
is an ACK), and any segments on the retransmission queue which
are thereby acknowledged should be removed.

If SND.UNA > ISS (our SYN has been ACKed), change the connection
state to ESTABLISHED, form an ACK segment

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

and send it. Data or controls which were queued for
transmission may be included, If there are other controls or
text in the segment then continue processing at the sixth step
below where the URG bit is checked, otherwise return.

Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

<SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

and send it. If there are other controls or text in the
segment, queue them for processing after the ESTABLISHED state
has been reached, return.

fifth, if neither of the SYN or RST bits is set then drop the
segment and return.
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Otherwise,

first check sequence number

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-i STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Segments are processed in sequence. Initial tests on arrival
are used to discard old duplicates, but further processing is
done in SEG.SEQ order. If a segment's contents straddle the
boundary between old and new, only the new parts should be
processed.

There are four cases for the acceptability test for an incoming
segment:

Segment Receive Test
Length Window

0 0 SEG.SEQ = RCV.NXT

0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0 0 not acceptable

>0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

If the RCV.WND is zero, no segments will be acceptable, but
special allowance should be made to accept valid ACKs, URGs and
RSTs.

If an incoming segment is not acceptable, an acknowledgment

should be sent in reply (unless the RST bit is set, if so drop
the segment and return):

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

After sending the acknowledgment, drop the unacceptable segment

and return.
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In the following it is assumed that the segment is the idealized
segment that begins at RCV.NXT and does not exceed the window.
One could tailor actual segments to fit this assumption by

trimming off any portions that lie outside the window (including
SYN and FIN), and only processing further if the segment then

begins at RCV.NXT. Segments with higher begining sequence

numbers may be held for later processing.

second check the RST bit,

SYN-RECEIVED STATE

If the RST bit is set

If this connection was initiated with a passive OPEN (i.e.,

came from the LISTEN state), then return this connection to
LISTEN state and return. The user need not be informed. If
this connection was initiated with an active OPEN (i.e., came
from SYN-SENT state) then the connection was refused, signal

the user "connection refused". In either case, all segments
on the retransmission queue should be removed. And in the

active OPEN case, enter the CLOSED state and delete the TCB,
and return.

ESTABLISHED
FIN-WAIT-I
FIN-WAIT-2
CLOSE-WAIT

If the RST bit is set then, any outstanding RECEIVEs and SEND
should receive "reset" responses. All segment queues should be

flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT

If the RST bit is set then, enter the CLOSED state, delete the
TCB, and return.
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third check security and precedence

SYN-RECEIVED

If the security/compartment and precedence in the segment do not
exactly match the security/compartment and precedence in the TCB
then send a reset, and return.

ESTABLISHED STATE

if the security/compartment and precedence in the segment do not
exactly match the security/compartment and precedence in the TCB
then send a reset, any outstanding RECEIVEs and SEND should
receive "reset" responses. All segment queues should be
flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

Note this check is placed following the sequence check to prevent
a segment from an old connection between these ports with a
different security or precedence from causing an abort of the
current connection.

fourth, check the SYN bit,

SYN-RECEIVED
ESTABLISHED STATE
FIN-WAIT STATE-i
FIN-WAIT STATE-2
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

If the SYN is in the window it is an error, send a reset, any
outstanding RECEIVEs and SEND should receive "reset" responses,
all segment queues should be flushed, the user should also
receive an unsolicited general "connection reset" signal, enter

the CLOSED state, delete the TCB, and return.

If the SYN is not in the window this step would not be reached
and an ack would have been sent in the first step (sequence
number check).
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fifth check the ACK field,

if the ACK bit is off drop the segment and return

if the ACK bit is on

SYN-RECEIVED STATE

If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state
and continue processing.

If the segment acknowledgment is not acceptable, form a
reset segment,

<SEQ=SEG.ACK><CTL=RST>

and send it.

ESTABLISHED STATE

If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
Any segments on the retransmission queue which are thereby
entirely acknowledged are removed. Users should receive
positive acknowledgments for buffers which have been SENT and
fully acknowledged (i.e., SEND buffer should be returned with
"ok" response). If the ACK is a duplicate
(SEG.ACK < SND.UNA), it can be ignored. If the ACK acks
something not yet sent (SEG.ACK > SND.NXT) then send an ACK,
drop the segment, and return.

If SND.UNA < SEG.ACK =< SND.NXT, the send window should be
updated. If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and
SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set
SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.AC'".

Note that SND.WND is an offset from SND.UNA, that SND.WL1
records the sequence number of the last segment used to update
SND.WND, and that SND.WL2 records the acknowledgment number of
the last segment used to update SND.WND. The check here
prevents using old segments to update the window.
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FIN-WAIT-i STATE

In addition to the processing for the ESTABLISHED state, if
our FIN is now acknowledged then enter FIN-WAIT-2 and continue
processing in that state.

FIN-WAIT-2 STATE

In addition to the processing for the ESTABLISHED state, if
the retransmission queue is empty, the user's CLOSE can be
acknowledged ("ok") but do not delete the TCB.

CLOSE-WAIT STATE

Do the same processing as for the ESTABLISHED state.

CLOSING STATE

In addition to the processing for the ESTABLISHED state, if
the ACK acknowledges our FIN then enter the TIME-WAIT state,
otherwise ignore the segment.

LAST-ACK STATE

The only thing that can arrive in this state is an
acknowledgment of our FIN. If our FIN is now acknowledged,
delete the TCB, enter the CLOSED state, and retura.

TIME-WAIT STATE

The only thing that can arrive in this state is a
retransmission of the remote FIN. Acknowledge it, and restart
the 2 MSL timeout.

sixth, check the URG bit,

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and signal
the user that the remote side has urgent data if the urgent
pointer (RCV.UP) is in advance of the data consumed. If the

user has already been signaled (or is still in the "urgent
mode") for this continuous sequence of urgent data, do not
signal the user again.
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CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT

This should not occur, since a FIN has been received from the
remote side. Ignore the URG.

seventh, process the segment text,

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

Once in the ESTABLISHED state, it is possible to deliver segment

text to user RECEIVE buffers. Text from segments can be moved
into buffers until either the buffer is full or the segment is

empty. If the segment empties and carries an PUSH flag, then

the user is informed, when the buffer is returned, that a PUSH

has been received.

When the TCP takes responsibility for delivering the data to the

user it must also acknowledge the receipt of the data.

Once the TCP takes responsibility for the data it advances
RCV.NXT over the data accepted, and adjusts RCV.WND as

apporopriate to the current buffer availability. The total of

RCV.NXT and RCV.WND should not be reduced.

Please note the window management sucgestions in section 3.7.

-r Send an acknowledgment of the form:

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

This acknowledgment should be piggybacked on a segment being

transmitted if possible without incurring undue delay.
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CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

This should not occur, since a FIN has been received from the
remote side. Ignore the segment text.

eighth, check the FIN bit,

Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT
since the SEG.SEQ cannot be validated; drop the segment and
return.

If the FIN bit is set, signal the user "connection closing" and
return any pending RECEIVEs with same message, advance RCV.NXT
over the FIN, and send an acknowledgment for the FIN. Note that
FIN implies PUSH for any segment text not yet delivered to the
user.

SYN-RECEIVED STATE

ESTABLISHED STATE

Enter the CLOSE-WAIT state.

FIN-WAIT-1 STATE

If our FIN has been ACKed (perhaps in this segment), then
enter TIME-WAIT, start the time-wait timer, turn off the other
timers; otherwise enter the CLOSING state.

FIN-WAIT-2 STATE

Enter the TIME-WAIT state. Start the time-wait timer, turn
off the other timers.

CLOSE-WAIT STATE

Remain in the CLOSE-WAIT state.

CLOSING STATE

Remain in the CLOSING state.

LAST-ACK STATE

Remain in the LAST-ACK state.
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TIME-WAIT STATE

Remain in the TIME-WAIT state. Restart the 2 MSL time-wait
timeout.

and return.
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USER TIMEOUT

For any state if the user timeout expires, flush all queues, signal

the user "error: connection aborted due to user timeout" in general
and for any outstanding calls, delete the TCB, enter the CLOSED
state and return.

RETRANSMISSION TIMEOUT

For any state if the retransmission timeout expires on a segment in
the retransmission queue, send the segment at the front of the
retransmission queue again, reinitialize the retransmission timer,
and return.

TIME-WAIT TIMEOUT

If the time-wait timeout expires on a connection delete the TCB,
enter the CLOSED state and return.
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1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP". The specification of interface between a
host and the ARPANET.

ACK
A control bit (acknowledge) occupying no sequence space, which
indicates that the acknowledgment field of this segment
specifies the next sequence number the sender of this segment
is expecting to receive, hence acknowledging receipt of all
previous sequence numbers.

ARPANET message
The unit of transmission between a host and an IMP in the
ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets (1008 bits).

connection
A logical communication path identified by a pair of sockets.

datagram
A message sent in a packet switched computer communications
network.

Destination Address
The destination address, usually the network and host
identifiers.

FIN
A control bit (finis) occupying one sequence number, which
indicates that the sender will send no more data or control
occupying sequence space.

fragment
A portion of a logical unit of data, in particular an internet
fragment is a portion of an internet datagram.

FTP
A file transfer protocol.
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header
Control information at the beginning of a message, segment,
fragment, packet or block of data.

host
A computer. In particular a source or destination of messages
from the point of view of the communication network.

Identification

An Internet Protocol field. This identifying value assigned

by the sender aids in assembling the fragments of a datagram.

IMP
The Interlace Message Processor, the packet switch of the
ARPANET.

internet address
A source or destination address specific to the host level.

internet datagram
The unit of data exchanged between an internet module and the
higher level protocol together with the internet header.

internet fragment
A portion of the data of an internet datagram with an internet
header.

IP
Internet Protocol.

IRS
The Initial Receive Sequence number. The first sequence
number used by the sender on a connection.

ISN
The Initial Sequence Number. The first sequence number used
on a connection, (either ISS or IRS). Selected on a clock
based procedure.

ISS
The Initial Send Sequence number. The first sequence number

used by the sender on a connection.

leader
Control information at the beginning of a message or block of
data. In particular, in the ARPANET, the control information
on an ARPANET message at the host-IMP interface.
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left sequence

This is the next sequence number to be acknowledged by the
data receiving TCP (or the lowest currently unacknowledged
sequence number) and is -ometimes referred to as the left edge
of the send window.

local packet
The unit of transmission within a local network.

module
An implementation, usually in software, of a protocol or other
procedure.

MSL
Maximum Segment Lifetime, the time a TCP segment can exist in

the internetwork system. Arbitrarily defined to be 2 minutes.

octet
An eight bit byte.

Options
An Option field may contain several options, and each option
may be several octets in length. The options are used
primarily in testing situations; for example, to carry

timestamps. Both the Internet Protocol and TCP provide for
options fields.

packet
A package of data with a header which may or may not be
logically complete. More often a physical packaging than a

logical packaging of data.

port
The portion of a socket that specifies which logical input or

output channel of a process is associated with the data.

process
A program in execution. A source or destinatiot, data from
the point of view of the TCP or other host- + ric ,rotocol.

PUSH
A control bit occupying no sequence space, iodicating that
this segment contains data that must be pushed through to the
receiving user.

RCV.NXT
receive next sequence number
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RCV.UP
receive urgent pointer

RCV.WND
receive window

receive next sequence number
This is the next sequence number the local TCP is expecting to
receive.

receive window
This represents the sequence numbers the local (receiving) TCP
is willing to receive. Thus, the local TCP considers that
segments overlapping the range RCV.NXT to
RCV.NXT + RCV.WND - 1 carry acceptable data or control.
Segments containing sequence numbers entirely outside of this
range are considered duplicates and discarded.

RST
A control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection without further
interaction. The receiver can determine, based on the
sequence number and acknowledgment fields of the incoming
segment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST give
rise to a RST in response.

RTP
Real Time Protocol: A host-to-host protocol for communication
of time critical information.

SEG.ACK
segment acknowledgment

SEG.LEN
segment length

SEG.PRC
segment precedence value

SEG.SEQ
segment sequence

SEG.UP
segment urgent pointer field
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SEG.WND
segment window field

segment
A logical unit of data, in particular a TCP segment is the
unit of data transfered between a pair of TCP modules.

segment acknowledgment
The sequence number in the acknowledgment field of the

arriving segment.

segment length
The amount of sequence number space occupied by a segment,

including any controls which occupy sequence space.

segment sequence
The number in the sequence field of the arriving segment.

send sequence
This is the next sequence number the local (sending) TCP will

use on the connection. It is initially selected from an
initial sequence number curve (ISN) and is incremented for
each octet of data or sequenced control transmitted.

send window
This represents the sequence numbers which the remote
(receiving) TCP is willing to receive. It is the value of the
window field specified in segments from the remote (data
receiving) TCP. The range of new sequence numbers which may

be emitted by a TCP lies between SND.NXT and
SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
between SND.UNA and SND.NXT are expected, of course.)

SND.NXT
send sequence

SND.UNA
left sequence

SND.UP
send urgent pointer

SND.WL1
segment sequence number at last window update

SND.WL2
segment acknowledgment number at last window update
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SND.WND
send window

socket
An address which specifically includes a port identifier, that
is, the concatenation of an Internet Address with a TCP port.

Source Address
The source address, usually the network and host identifiers.

SYN
A control bit in the incoming segment, occupying one sequence
number, used at the initiation of a connection, to indicate
where the sequence numbering will start.

TCB
Transmission control block, the data structure that records
the state cf a connection.

TCB.PRC
The precedence of the connection,

TCP
Transmission Control Protocol: A host-to-host protocol for
reliable communication in internetwork environments.

TOS
Type of Service, an Internet Protocol field.

Type of Service
An Internet Protocol field which indicates the type of service
for this internet fragment.

URG
A control bit (urgent), occupying no sequence space, used to
indicate that the receiving user should be notified to do
urgent processing as long as there is data to be consumed with
sequence numbers less than the value indicated in the urgent
pointer.

urgent pointer
A control field meaningful only when the URG bit is on. This
field communicates the value of the urgent pointer which
indicates the data octet associated with the sending user's
urgent call.
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PRE-EMPIION

In circuit-switching systems, once a user has acquired a circuit, the
communication bandwidth of that circuit is dedicated, even if it is not
used. When the system saturates, additional circuit set-up requests are
blocked. To allow high precedence users to gain access to circuit
resources, systems such as AUTOVON associate a precedence with each
telephone instrument. Those instruments with high precedence can
pre-empt circuit resources, causing lower precedence users to be cut
off.

In message switching systems such as AUTODIN I, incoming traffic is
stored on disks (or drums or tape) and processed in order of
precedence. If a high precedence message is entered into the system, it
is processed and forwarded as quickly as possible. When the high
precedence message arrives at the destination message switch, it may
pre-empt the use of the output devices on the switch, interrupting the
printing of a lower precedence message.

In packet switching systems, there is little or no storage in the
transport system so that precedence has little impact on delay for
processing a packet. However, when a packet switching system reaches
saturation, it rejects offered traffic. Precedence can be used in
saturated packet switched systems to sort traffic queued for entry into
the system.

In general, precedence is a tool for deciding how to allocate resources
when systems are saturated. In circuit switched systems, the resource
is circuits; in message switched systems the resource is the message
switch processor; and in packet switching the resource is the packet
switching system itself.

This capability can be realized in AUTODIN II without adding any new
mechanisms to TCP (except to make precedence of incoming connection
requests visible to the processes which use TCP). To allow pre-emptive
access to a particular terminal, the software (i.e., THP) which supports
terminal access to the TAC can be configured so as to always have a
LISTEN posted for that terminal, even if the terminal has a connection
in operation. For example in the ARPANET TENEX systems, the user TELNET
permits a user to have many connections open at one time - the user can
switch among them at will. To the extent that this can be done without
violating security requirements. one could imagine a multi-connection
THP which always leaves a LISTEN pending for incoming connection
requests. If a connection is established, the THP can decide, based on
its precedence, whether to pre-empt any existing connection and to
switch the user to the high precedence one.

If the user is working with several connections of different precedence
at the same time, the THP would close or abort the lowest precedence
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connection in favor of the higher precedence pre-empting one. Then the
THP would do a new LISTEN on that terminal's port in case a higher
precedence connection is attempted.

One of the reasons for suggesting this model is that processes are the
users of TCP (in general) and that TCP itself cannot cause processes to
be created on behalf of an incoming connection request. Implementations
could be realized in which TCPs accept incoming connection requests and,
based on the destination port number, create appropriate server,
processes. In terms of pre-empting access o a remote terminal,
however, it seems more sensible to let the process which interfaces the
terminal to the system mediate the pre-emption. If the terminal is not
connected or is turned off, there is no point in creating a process to
serve the incoming high precedence connection request.

For example, suppose a routine FTP is in operation between Host X and
Host Y. Host Z decides to do a flash-override FTP to Host X. It opens
a high precedence connection via its TCP and the "SYN" goes out to the
FTP port on Host X.

FTP always leaves one LISTEN pending to pre-empt lower precedence remote
users if it cannot serve one more user (and still keep a LISTEN
pending). In this way, the FTP is naturally in a state permitting the
high precedence connection request to be properly served, and the FTP
can initiate any cleaning up that is needed to deal with the
pre-emption.

In general, this strategy permits the processes using TCP to accommodate
pre-emption in the context of the applications they support.

A non-pre-emotable process is one that does not have a LISTEN pending
while it is serving one (or more) users.

4 The actions taken to deal with pre-emption of TCP connections will be
application-process specific and this strategy of a second (or N+Ist)
LISTEN is well suited to the situation.

Pre-emption may also be necessary at the site initiating a high
precedence connection request. Suppose there is a high precedence user
who wants Lo open an FTP connection request from Host Z to Host X. But
all FTP and/or TCP resources are saturated when this user tries to start
the user FTP process. In this case, the operating system would have to
know about the precedence of the user and would have to locally pre-empt
resources on his behalf (e.g., by logging out lower precedence users).
This is a system issue, not specific only to TCP. Implementation of
pre-emption at the source could vary greatly. Precedence may be
associated with a user or with a terminal. The TCP implementation may
locally pre-empt resources to serve high precedence users. The

operating system may make all pre-emption decisions.
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This memo describes the relationship between the Internet
Protocol (IP) [1] Type of Service and the service parameters of specific
networks.

The IP Type of Service has the following fields:

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay, 1 = Low Delay.
Bits 4: 0 = Normal Throughput, 1 = High Throughput.
Bits 5: 0 = Normal Relibility. 1 = High Relibility.
Bit 6-7: Reserved for Future Use.

0 1 2 3 4 5 6 7
-+----+-....-+..-...+....--+---- - +

I I I I I I I
I PRECEDENCE l D l T R l 0 I 0 l

-I I I I I I
1 + - + +t+w+k C+o+t+

111 - Network Control
110 - Internetwork Control

101 - CRITIC/ECP
100 - Flash Override
011 - Flash
010 - Immediate
001 - Priority
000 - Routine

The individual networks listed here have very different and specific

service choices.
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AUTODIN II

The service choices are in two parts: Traffic Acceptance Catagories,
and Application Type. The Traffic Acceptance Catagories can be
mapped into and out of the IP TOS precedence reasonably directly.
The Application types can be mapped into the remaining IP TOS fields
as follows.

TA DELAY THROUGHPUT RELIABILITY

I/A 1 0 0
Q/R 0 0 0
BI 0 1 0
B2 0 1 1

DTR TA

000 Q/R
001 Q/R
010 BI
011 B2
100 I/A
101 I/A
110 I/A
ill error
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ARPANET

The service choices are in quite limited. There is one priority bit
that can be mapped to the high order bit of the IP TOS precedence.
The other choices are to use the regular ("Type 0") messages vs. the
uncontrolled ("Type 3") messages, or to use single packet vs.
multipacket messages. The mapping of ARPANET parameters into IP TOS
parameters can be as follows.

Type Size DELAY THROUGHPUT RELIABILITY

0 S 1 0 0
0 M 0 0 0
3 S 1 0 0
3 M not allowed

DTR Type Size

000 0 M
001 0 M
010 0 M
011 0 M

100 3 S
101 0 S
110 3 S
111 error
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PRNET

There is no priority indication. The two choices are to use the
station routing vs. point-to-point routing, or to require
acknowledgments vs. having no acknowledgments. The mapping of PRNET
parameters into IP TOS parameters can be as follows.

Routing Acks DELAY THROUGHPUT RELIABILITY

ptp no 1 0 0
ptp yes 1 0 1

station no 0 0 0
station yes 0 0 1

DTR Routing Acks
000 station no-
000 station no
001 station yes
010 station no
Oil station yes

100 ptp no
101 ptp yes

110 ptp no
111 ptp yes

SATNET

There is no priority indication. The four choices are to use the
block vs. stream type, to select one of four delay catagories, to
select one of two holding time strategies, or to request one of three
reliability levels. The mapping of SATNET parameters into IP TOS
parameters can thus quite complex there being 2"4"2*3=48 distinct
possibilities.

References

[1] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
Protocol Specificatioi,," RFC 791, USC/Information Sciences
Institute, September 1981.
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ADDRESS MAPPINGS

Internet Addresses

This memo describes the relationship between address fields used in
the Internet Protocol (IP) [1] and several specific networks.

An internet address is a 32 bit quantity, with several codings as
shown below.

The first type (or class a) of address has a 7-bit network number and
a 24-bit local address.

1 2 3
0 1 2 34567 89012 34567 89012 3456789 01

101 NETWORK I Local Address

Class A Address

The second type (or class b) of address has a 14-bit network number
and a 16-bit local address.

1 2 3
01234567 89012 34567 89012 34567 89 01

l 01 NETWORK I Local Address

Class B Address

The third type (or class c) of address has a 21-bit network number
and a 8-bit local address.

1 2 301234567890123456789012345678901
+-+-+-+-+-+-+-+-+-+- +-+-+- -@-+-+-+-+-+-*-+-+-+-+-+-+-+-+-+-+-+-+

11 1 01 NETWORK g Local Address I

Class C Address

The local address carries information to address a host in *.he
network identified by the network number. Since each netw rk has a
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particular address format and length, the following section describes
the mapping between internet local addresses and the actual address
format used in the particular network.

Internet to Local Net Address Mappings

The following transformations are used to convert internet addresses
to local net addresses and vice versa:

AUTODIN II

The AUTODIN II has 16 bit subscriber addresses which identify
either a host or a terminal. These addresses may be assigned
independent of location. The 16 bit AUTODIN II address is
located in the 24 bit internet local address as shown below.

The network number of the AUTODIN II is 26 (Class A).

------------------

I HOST/TERMINAL I AUTODIN II
----------------------

16

----------- +-------------------------

1 26 1 ZERO I HOST/TERMINAL I IP
+------------------+-------------+-------------

8 8 16
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ARPANET

The ARPANET (with 96 bit leaders) has 24 bit addresses. The 24
bits are assigned to host, logical host, and IMP leader fields
as illustrated below. These 24 bit addresses are used directly
for the 24 bit local address of the internet address. However,
the ARPANET IMPs do not yet support this form of logical
addressing so the logical host field is set to zero in the
leader.

The network number of the ARPANET is 10 (Class A).

--- -------------------------

I HOST I ZERO j IMP j ARPANET
-- -------------------------

8 8 8

+-----------+-------------+------------+

1 10 1 HOST I LH I IMP I IP
+ ------------------------ +------------+

8 8 8 8

DCNs

The Distributed Computing Networks (DCNs) at COMSAT and UCL use
16 bit addresses divided into an 8 bit host identifier (HID),
and an 8 bit process identifier PIO). The format locates
these 16 bits in the low order I bits of the 24 bit internet
address, as shown below.

The network number of the COMSAT-DCN is 29 (Class A), and of

the UCL-DCN is 30 (Class A).

+------ ------------- +
I HID I PID I DCN
------ +-------------+

8 8

+------------------+-------------+-------------

1 18 1 ZERO I HID I PID I IP
+------------------+-------------+-------------

8 8 8 8

Postel [Page 3]



September 1981

RFC 796 Address Mappings

EDN

The Experimental Data Network at the Defense Communication
Engineering Center (DCEC) uses the same type of addresses as
the ARPANET (wi-A. 96 bit leaders) and has 24 bit addresses.
The 24 bits are assigned to host, logical host, and IMP leader
fields as illustrated below. These 24 bit addresses are used

directly for the 24 bit local address of the internet address.
However, the IMPs do not yet support this form of logical
addressing so the logical host field is set to zero in the
leader.

The network number of the EDN is 21 (Class A).

+-- -------------------------

I HOST I ZERO I IMP I EDN
+--------------------------------

8 8 8

+------------------+-------------+-------------

I 21 1 HOST I LH I IMP I IP
+------------------+-------------+-------------

8 8 8 8

LCSNET

The LCS NET at MIT's Laboratory for Computer Science uses 32
bit addresses of several formats. Please see [3] for more
details. The most common format locates the low order 24 bits
of the 32 bit LCS NET address in the 24 bit internet local
address, as shown below.

The network number of the LCS NET is 18 (Class A).

-- ------------- +------------

I SUBNET IRESERVEDI HOST I LCSNET
+--- -+-------------+------------+

8 8 8

+------------------------------------

1 18 I SUBNET IRESERVEDI HOST I IP
+-------------------------------------

8 8 8 8
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PRNET

The Packet Radio networks use 16 bit addresses. These are
independent of location (indeed the hosts may be mobile). The
16 bit PRNET addresses are located in the 24 bit internet local
address as shown below.

The network numbers of the PRNETs are:

BBN-PR 1 (Class A)
SF-PR-i 2 (Class A)
SILL-PR 5 (Class A)
SF-PR-2 6 (Class A)
BRAGG-PR 9 (Class A)
DC-PR 20 (Class A)

+------ +-------------

I HOST I PRNET
------ -------------

16

+------------------+-------------+-------------

I net I ZERO I HOST I IP
------------------------ 4------------

8 8 16

* I
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SATNET

The Atlantic Satellite Packet Network has 16 bit addresses for
hosts. These addresses may be assigned independent of location
(i.e., ground station). It is also possible to assign several
addresses to one physical host, so the addresses are logical
addresses. The 16 bit SATNET address is located in the 24 bit
internet local address as shown below.

The network number of the SATNET is 4 (Class A).

+-----------+--------

I HOST I SATNET
-------------------

16

+------------------+-------------+-------------

I 4l ZERO I HOST I IP
8 8 16

WBCNET

The Wideband Communication Satellite Packet Network (WBCNET)
Host Access Protocol (HAP) has 16 bit addresses for hosts. It
is possible to assign several addresses to one physical host,
so the addresses are logical addresses. The 16 bit WBCNET
address is divided into a HAP Number field and a Local Address
field, and is located in the 24 bit internet local address as
shown below. Please see [2] for more details.

The network number of the WBCNET is 28 (Class A).

--------- +-------------

I HAP NUMI LCL ADDI WBCNET
--------- +-------------

8 8

+--------------------------+-------------

I 28 I HAP NUMI ZERO I LCL ADDI IP
------------------ +--------------4-------------

8 8 8 8
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